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1. Objectives

The Gini index is widely used as a measure of income inequal-
ity or wealth inequality in social sciences.

Methods used to compare two Gini indices are very expensive.

We propose a new jackknife empirical likelihood (JEL) method
to reduce the computation cost.

2. Introduction

Let F (x) = P (X ≤ x) be the cumulative distribution function of
a non-negative random variable X. The Gini index G is defined
as

G =
1

µ

∫ ∞
0

(2F (x)− 1)xdF (x) =
E|X − Y |

2EX
, (1)

where X and Y are two independent random variables follow-
ing the same distribution F (x) and µ = EX.

Figure 1: The Gini index.

3. Methods

Given i.i.d. data set X = {X1, X2, ..., Xn}, n ≥ 2, the Gini index
defined by (1) can be estimated by the ratio of two U -statistics
with kernels h1(x, y) = |x− y| and h2(x) = x, that is,

Ĝ =
U1

U2
=

(n
2

)−1 ∑
1≤i<j≤n

h1(Xi, Xj)

2n−1
∑

1≤i≤n
h2(Xi)

. (2)

3.1 Profile Jackknife empirical likelihood
To derive the JEL confidence intervals for the difference of two
Gini indices for paired samples, Wang and Zhao (2016), used the
following setting:
Let {X,Y}′ = {(X1, Y1)′, ..., (Xn, Yn)′} be i.i.d. bivariate random
variables with common distribution function F (x, y). Let F1(x) =
F (x,∞) and F2(y) = F (∞, y) be the marginal distributions for X

and Y , and G1 and G2 be the corresponding Gini indices associ-
ated with F1(.) and F2(.), respectively. Let ∆ = G1 −G2. Define

UXn (G1) =

(
n

2

)−1 ∑
1≤i<j≤n

h(Xi, Xj;G1), (3)

UYn (G2) =

(
n

2

)−1 ∑
1≤i<j≤n

h(Yi, Yj;G2), (4)

where h(Xi, Xj;G) = (Xi + Xj)G− |Xi −Xj|
Considering ∆ as the parameter of interest and G2 as a nuisance
parameter and using a vector-type jackknife pseudo-values, they
developed a profile JEL ratio at the true ∆, in which the estimated
nuisance parameter minimizes the JEL ratio when ∆ is fixed.
However, the computation of the profile JEL could be very costly.

3.2 The proposed Jackknife empirical likelihood
Since equation UYn (G2) = 0 does not depend on ∆, it can be used
to find an estimate Ĝ2 of G2. Solving the above equation we ob-
tain a closed form of Ĝ2:

Ĝ2 =

(n
2

)−1 ∑
1≤i<j≤n

|Yi − Yj|

2Ȳ
, (5)

where Ȳ is the sample mean. Then plugging in Ĝ2 in equation
UXn (G1) = 0, we can apply the JEL method for ∆. Let

Mn(∆) =

(
n

2

)−1 ∑
1≤i<j≤n

h(Xi, Xj; ∆ + Ĝ2). (6)

To apply JEL as defined by Jing et al. (2009), we define the jack-
knife pseudo-values as

V̂i(∆) = nMn(∆)− (n− 1)M
(−i)
n (∆), (7)

where M
(−i)
n (∆) is the U -statistic obtained after deleting the ith

observation Xi from the sample. The jackknife estimator Mn,jack
can be viewed as a sample average of approximately independent
random variables V̂i. Then we can apply the standard EL method
(see Owen, 2001) to V̂i, the JEL ratio at ∆ can be expressed as

R (∆) = sup


n∏
i=1

npi : pi ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piV̂i(∆) = 0

 .

Applying the Lagrange multiplier technique, we obtain the log-
likelihood

logR (∆) = −
n∑
i=1

log{1 + λV̂i(∆)}.

Let g(x; ∆, G2) = Eh(x,X2; ∆ + G2) and σ2
g(∆, G2) =

V ar(g(X1; ∆, G2)). We have the Wilks theorem for the JEL as
follows :

Theorem 1: If EX2
1 <∞ and σ2

g(∆, G2) > 0, then

−2 logR (∆)
D−→ χ2

1, as n→∞, (8)

where χ2
1 is a standard chi-squared random variable with one

degree of freedom.

Following this theorem, an asymptotic 100 (1− α) % confidence in-
terval for ∆ is given by

{∆̃ : −2 logR(∆̃) ≤ χ2
1−α (1)},

where χ2
1−α (1) is the 100 (1− α)− percentile of the chi-square

distribution with one degree of freedom.

4. Results

4.1 Simulation Study
We compare the performance of the proposed JEL (JEL-AZ)
method with the JEL method in Wang and Zhao (2016) (JEL-WZ)
through simulations. We also investigate the adjusted jackknife
empirical likelihood (AJEL) and the bootstrap-calibration (JEL-
Boot) to improve coverage accuracy for small samples.

Table 1: Comparison of coverage probabilities and average lengths of the
confidence intervals for different jackknife empirical likelihood methods;

X, Y ∼ U(0, 1).
n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 0.884 (0.084) 0.940 (0.108) 0.889 (0.054) 0.942 (0.070) 0.897 (0.044) 0.948 (0.057)
JEL-AZ 0.903 (0.114) 0.952 (0.136) 0.895 (0.072) 0.939 (0.093) 0.896 (0.057) 0.948 (0.073)
AJEL-WZ 0.896 (0.089) 0.950 (0.116) 0.898 (0.061) 0.946 (0.080) 0.902 (0.049) 0.951 (0.061)
AJEL-AZ 0.928 (0.134) 0.966 (0.162) 0.929 (0.084) 0.966 (0.106) 0.922 (0.064) 0.960 (0.081)
JEL-WZ-Boot 0.914 (0.086) 0.957 (0.109) 0.893 (0.055) 0.951 (0.071) 0.895 (0.043) 0.949 (0.059)
JEL-AZ-Boot 0.905 (0.115) 0.953 (0.137) 0.899 (0.073) 0.943 (0.094) 0.898 (0.060) 0.950 (0.075)

Table 2: Comparison of computing times (in seconds) for different jackknife
empirical likelihood methods; X, Y ∼ U(0, 1).

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 150

1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95 1− α = 0.90 1− α = 0.95

JEL-WZ 5294 6239 5998 6219 5513 6236
JEL-AZ 344 428 463 502 437 532
AJEL-WZ 3835 4991 4835 5603 4675 6114
AJEL-AZ 357 453 511 547 456 612
JEL-WZ-Boot 31460 31751 73171 67799 254544 220765
JEL-AZ-Boot 6131 7033 20735 19471 46992 44879

Based on the table 1 and 2 make the following conclusions:

All the coverage probabilities tend to their nominal levels as the
sample size increases.

JEL-AZ methods have better coverage than JEL-WZ ones

The running times of JEL-WZ simulations are 5 to 20 times
these of JEL-AZ’s.

4.2 Real Application
We apply the proposed methods to estimate the real GDP (Gross
Domestic Product) per capita in constant dollars expressed in in-
ternational prices, base year 1985 for the years 1970 and 1990.
These data sets are extracted from the Penn World Tables data
(Summers & Heston (1995)). In this case, the Gini index mea-
sures the dispersion of real GDP across the 108 countries for
which data are available.
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Figure 2: Exploratory plots for the data set.

Figure 1 shows that the data at years 1970 and 1990:
Seem to be exponentially distributed: their estimated Gini in-
dexes (0.488 and 0.525) are very close to 0.5, the Gini index
from exponential distribution.
Are highly correlated: the correlation coefficient is 0.931.

Table 3: Point and interval estimates for the parameters of interest from
the data set.

Point estimate Interval estimate

G1 at 1970 G2 at 1990 G1 −G2 1− α = 0.90 1− α = 0.95

Plug-in 0.484 0.520 −0.037 JEL-WZ (−0.060,−0.011) (−0.056,−0.015)
U-statistic 0.488 0.525 −0.037 JEL-AZ (−0.071,−0.001) (−0.066,−0.007)

AJEL-WZ (−0.059,−0.010) (−0.055,−0.015)
AJEL-AZ (−0.110,−0.010) (−0.098,−0.017)

Table 3 confirms that JEL-AZ methods confidence intervals for
the difference between the Gini indices at years 1970 and 1990
are wider than these of JEL-WZ methods but in both cases the
confidence intervals are small enough to conclude that there is a
significant difference between the two indices (G1 < G2).

5. Conclusions

JEL-AZ methods require less computation than JEL-WZ ones.
They have better coverage probability than JEL-WZ methods.
Can be applied to a wide range of paired data sets.
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