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v Model setup: Let {𝑋# 𝑟, 𝑠 ∈ ℒ) 𝐼+×𝐼- , 𝑖 = 1, … , 𝑛, 𝑠 ∈
𝐼+, 𝑟 ∈ 𝐼-} be random processes. Given 𝑋# , the response 
follows an exponential family distribution
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v Alternative forms:
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where 𝑎 > 0, 𝑏, and 𝑐 are known functions, 𝜼 𝑿 	=
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𝒅𝒓𝒅𝒔	is the canonical parameter with 
the parameter function 	𝜷	to be estimated, and 𝜙	is either 
known or a nuisance parameter.

Motivating Examples

vLogistic Regression. Consider binary responses 𝑌#|𝑋# ∼Bin(𝑝#), 
where  𝑝# =

abc < =d
efgbc(<(=d))

and the density is 

𝑓(𝑦|𝑥) = 𝑝; 1 − 𝑝 e>; = exp(𝑦𝜂 𝑥 − log(1 + 𝑒< n ),	
where 𝜂 𝑥 = ∫ ∫ 𝑥 𝑟, 𝑠 𝛽(𝑟, 𝑠)𝑑𝑟𝑑𝑠�
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)is the 

logit function. In this case, 𝑏(𝜂) = log(1 + 𝑒<)	and 𝑎(𝜙) = 1.
Motivation: Image classification.  

v Poisson regression: Consider Poisson responses 𝑌#|𝑋# ∼ 	Poi 𝜆# ,	
where 𝜆# = exp 𝜂 𝑋# ,	and the density is 

																		𝑓 𝑦 𝑥 = stguv
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where 𝜂 𝑥 = ∫ ∫ 𝑥 𝑟, 𝑠 𝛽(𝑟, 𝑠)𝑑𝑟𝑑𝑠�
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=log	(𝜆(𝑥)) is the log intensity. 
In this case, 𝑏(𝜂) = 𝑒< and 𝑎 𝜙 = 1.

Motivation: Gene expression effected by Histone Modification

Star Circle

	𝑌: Gene expression value
𝑋(𝑟): Histone modification level H3K9me3
𝑍(𝑠): Histone modification level H3K4me2

To estimate the coefficient function 𝛽, one can minimize the 
following penalized likelihood functional
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where 𝐽(𝛽)	is a quadratic functional to quantify the smoothness 
of 𝛽	, and 𝜆		is the smoothing parameter balancing the tradeoff 
between the goodness of fit and the smoothness of 𝛽.

Suppose	𝛽	is located in a reproducing kernel Hilbert space ℋ
with the reproducing kernel 𝐾,	then the minimizer of (1) can be 
reduced into a finite-dimensional space.

(1)

Theorem 1. Denote 	𝛽~ 	as the minimizer of (1), then 𝛽~	has the form
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= 𝒅�𝝍 𝑟, 𝑠 + 𝒄�𝝃(𝑟, 𝑠)
where 𝑑-, 𝑐-, 𝑑+, 𝑐+ are coefficients to estimate, 𝜓-, 𝜉-, 𝜓+, 𝜉+ are 
basis functions of the corresponding marginal reproducing kernel 
Hilbert spaces.

It is easy to check that (1) is strictly convex in 𝜂, and hence 
strictly convex in 𝛽. Therefore, one can perform Newton 
iteration to calculate the minimizer 𝛽~ given a fixing smoothing 
parameter 𝜆. Similar to the classic GLM, the estimation of 𝛽 can 
be updated by minimizing the penalized weighted least squares
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The smoothing parameter 𝜆	can be selected by minimizing the 
generalized approximate cross validation (GACV).

Let 𝑆 be an 𝑛	×	𝑁	matrix with the 𝑖, 𝑗 ��	entry 
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, and Σ be an 𝑀	×
𝑀	matrix with the 𝑖, j �� entry 〈	𝜉#, 𝜉�⟩ = 𝐽(𝜉#, 𝜉�).	 𝑁 =
𝑁-𝑁+,𝑀 = 𝑛) + 𝑛(𝑁- +𝑁+).	Then estimating 𝛽 in (2) is 
reduced to find 𝒅 and 𝒄 in

min
𝒄,𝒅
	 𝑌� − 𝑆�𝒅 − 𝑅�𝒄 � 𝑌� − 𝑆�𝒅 − 𝑅�𝒄 + 𝑛𝜆𝒄𝑻Σ𝒄

where 𝑌� = 𝑊e/)𝑌, 𝑆� = 𝑊e/)𝑆, 𝑅� = 𝑊e/)𝑅,𝑊 =
diag(𝑤e,… ,𝑤y). 

(2)

We focus on the prediction error  𝐸 �̂� − 𝜂 ), which can be 
bounded by
ℛy ≜ ∫ ∫ ∫ ∫ 𝛽 𝑟e, 𝑠e − 𝛽~ 𝑟e, 𝑠e

𝑀 𝑟e, 𝑠e; 𝑟), 𝑠) 𝛽(𝑟), 𝑠)) − 𝛽~(𝑟), 𝑠)) 𝑑𝑟e𝑑𝑠e𝑑𝑟)𝑑𝑠)
where 𝑀 is the covariance kernel of 𝑋, ℛy is the risk based 
on the data with the sample size 𝑛.

Some conditions are needed to develop the convergence rate

• The eigenvalues 𝜌§	of the kernel 𝐾e/)𝑀𝐾e/) is of the 
order  𝜌§ ≍ 𝜈>)-.

• The kurtosis of 𝜂(𝑋, 𝛽) is bounded for any 𝛽 ∈ ℒ)
• The 𝑏′ is monotonic, 𝑏′′ and 𝑏(«) are uniformly 

bounded

Theorem 2. If the conditions above hold, and 𝛽~ minimizes (1), 
then 

In addition, we have the minimax convergence rate over all 
possible estimators based on the data with sample size 𝑛
Theorem 3. If the conditions above hold, then

for any 𝑐 → ∞, where 𝛽	® are taken over all possible estimators 
given the training samples and ℛy is corresponding to 𝛽�.

Taking 𝜆 = 𝑂(𝑛>
°N

±²°N) in (3), then (3) achieves the best 
convergence rate at 𝑂(𝑛>

°N
±²°N). 

Combining Theorems 2 and Theorem 3, we have 
shown the convergence rate of our estimator achieves the 
minimax lower bound, and hence our estimator is a rate 
optimal estimator.

(3)

We generate 500 samples to do the functional logistic regression 
in three cases and compare the proposed method (GQFR) with 
functional PCA.
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Figure 1: Density functions of 
gradients of a star and a circle. 

We use the density functions, i.e., Figure 1, of 50 stars and 50 circles 
from ImageNet to train the model. The estimated coefficient function 
is shown in Figure 2 (a), and the fitted probability to be a star in 
Figure 2 (b). 
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Figure 2
We compare our method with 
FPCA, as well as SVM to classify 
the images with 500 testing images.

Histone Modification
A histone modification is a vital post-translational modification 
to histone proteins. Quantitative analysis of the correlation 
between histone modifications and gene expression is crucial for 
the development of histone modifying enzyme-targeted drugs 
and the better understanding of epigenetic regulation of cellular 
processes.

We study the regulation mechanism between gene 
expression and two types of histone
modifications, i.e. H3K9me3
and H3K4me2, for liver 
cancer cell line, HepG2.

Quadrature form equivalent to the objective function

In this project, a penalized generalized quadrature functional 
regression is proposed to estimate the coefficient function in a 
reproducing kernel Hilbert space.

Ø The estimator is a projection of the true function in a 
finite-dimensional space;

Ø The estimator achieves the optimal convergence rate;
Ø The proposed method is applied on two real data 

examples.
r

0.2

0.4

0.6

0.8

s

0.2

0.4

0.6

0.8

−15

−10

−5

true

r

0.2

0.4

0.6

0.8

s

0.2

0.4

0.6

0.8

−15

−10

−5

0

fit

r

0.2

0.4

0.6

0.8

s

0.2

0.4

0.6

0.8

−60

−40

−20

0

20

fit

True FPCAGQFR

r

0.2

0.4

0.6

0.8

s

0.2

0.4

0.6

0.8

−60

−40

−20

0

20

fit

r

0.2

0.4

0.6

0.8

s

0.2

0.4

0.6

0.8

−100

−50

0

50

100

150

fit

ca
se
1

ca
se
3

ca
se
2

Finding the five 
corners of a star

GLM can be generalized to the case that the covariates 
are functions. We estimate the coefficient function 𝛽 in 
a reproducing kernel Hilbert space in the following 
model.
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