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Abstract

Brain function is organized in coordinated modes of spatio-temporal activity (functional
networks) exhibiting an intrinsic baseline structure with variations under different
experimental conditions. Existing approaches for uncovering such network structures
typically do not explicitly model shared and differential patterns across networks, thus
potentially reducing the detection power. We develop an integrative modeling approach for
jointly modeling multiple brain networks across experimental conditions. The proposed
Bayesian Joint Network Learning approach develops flexible priors on the edge probabilities
involving a common intrinsic baseline structure and differential effects specific to individual
networks. Conditional on these edge probabilities, connection strengths are modeled under
a Bayesian spike and slab prior on the off-diagonal elements of the inverse covariance
matrix. The model is fit under a posterior computation scheme based on Markov chain
Monte Carlo. An application of the method to fMRI Stroop task data provides unique
insights into brain network alterations between cognitive conditions.

Introduction and Goals

I Many researchers are interested in comparing brain networks across cognitive states
induced by experimental conditions with the aim of identifying functional connections
whose strengths reflect differences or commonalities between these conditions.

I Under a graph-theoretic approach, edges featuring differential strengths correspond to
brain connections that are more activated or suppressed during one experimental
condition as compared to others.

I The comparison of brain networks across multiple conditions may be performed on a
single subject or, as in our case, at a group level. Group level comparisons have the
advantage of being able to average out subject-specific idiosyncrasies, potentially
providing greater power to detect underlying biological differences and similarities.

I Penalized approaches for the joint estimation of multiple graphical models typically
smooth over the strength of connections across networks to enforce shared edges, which
is a useful modeling assumption but may not be supported in practical brain network
applications.

I In this work, we develop a Bayesian Gaussian graphical modeling approach for estimating
multiple networks. The approach, denoted as Bayesian Joint Network Learning (BJNL),
is implemented via a fully Gibbs posterior computation scheme which proceeds via
Markov chain Monte Carlo (MCMC).

I Our approach models the probability of a connection as a parametric function of a
baseline component shared across networks and differential components unique to each
network.

I The shared and differential effects are modeled under a Dirichlet process mixture of
Gaussians prior (Muller, 1996), and the edge probabilities are estimated by pooling
information across experimental conditions, thereby resulting in the joint estimation of
multiple brain networks.

I The role of the edge probabilities is twofold - they characterize uncertainty in network
estimation and enable direct testing of shared and differential patterns across networks
after multiplicity corrections.

I The connection strengths are encapsulated via network specific precision matrices, which
are modeled separately for each network under a spike and slab Bayesian graphical lasso
prior informed by the above edge probabilities.

Methods

Model

I The pre-whitened fMRI measurements for g -th experimental condition are modeled
as yit(g) ∼ Np(0,Ω−1g ), i = 1, . . . , n, t = 1, . . . ,Tig , g = 1, . . . ,G , where

π(Ωg) = C−1g

p∏
k=1

E (ωg ,kk ;
α

2
)

{∏
k<l

wg ,klN(ωg ,kl ; 0, τ−1g ,kl) + (1− wg ,kl)DE (ωg ,kl ;λ0)

}
I (Ωg ∈ M+),

(1)

where π(·) denotes the prior distribution, ωg ,kl and wg ,kl denote the strength and
probability of the functional connection between nodes k and l for network Gg
respectively, M+ denotes the space of all positive definite matrices, I (·) denotes the
indicator function, Cg is the intractable normalizing constant for the prior on the
precision matrix, Np(·; 0,Σ) denotes a p-variate Gaussian distribution with mean 0
and covariance Σ, and E (α) and DE (λ) denote the exponential and double
exponential distributions with scale parameters α−1 and λ−1 respectively.

I Information is pooled across experimental conditions to estimate the edge weights
wg ,kl , k 6= l , k, l = 1, . . . , p, leading to joint estimation of multiple networks.

I By pooling information to model the edge probabilities instead of the edge strengths,
we are able to jointly model multiple brain networks without constraining the edge
strengths in separate networks to be similar.

I The prior weights represent the unknown probabilities of having functional
connections, and are modeled via a parametric link function comprising unknown
shared and differential effects as:

wg ,kl = h(η0,kl , ηg ,kl), η0,kl ∼ f , ηg ,kl ∼ f , f ∼ P , P = DP(MP0), (2)

for k 6= l , k, l = 1, . . . , p, g = 1, . . . ,G , where h(·) is the parametric link function
relating the probability for edge (k, l) in network Gg to the network specific
differential effect (ηg ,kl) and common effect (η0,kl) across all networks, and
DP(MP0) denotes a Dirichlet process mixture prior defined by the precision
parameter M and base measure P0 ≡ N(0, σ2

η).

Parameter Diagram
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Simulation Study

Simulation Setup

We conducted a series of simulations to compare group level network estimation between BJNL and two popular penalized network
estimation methods: the graphical lasso (GL) (Friedman, 2008), which estimates networks separately, and the Joint Graphical Lasso
(JGL) (Danaher, 2014) under a fused lasso penalty, which pools information across graphs to jointly estimate multiple networks.
We considered all combinations of the following simulation settings:

I Erdos-Renyi random graphs, small-world networks, scale-free networks

I 40 nodes, 100 nodes

I 25% similarity, 50% similarity, 75% similarity between graphs

For each combination of simulation settings, we generated data from 100 subjects with 300 time points each.

Simulation Results
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Figure: Box plots of the AUC, L1 Error, and TPR/FPR for differential edge detection for the simulations. Within each approach, the box plots are organized as:
low difference, medium difference, and high difference in edges between experimental conditions, in that order.

Stroop Task

Data

I We applied the proposed BJNL to a fMRI Stroop task study to investigate similarities and differences in the brain network under
exertion and relaxed task performance.

I Data were in the AAL 90 node atlas.

I Functional module partition into nine resting state networks (Smith, 2009).

I 45 subjects, 100 time points per subject.

I Subjects were instructed to perform the Stroop task “with maximum effort” (EXR) and “as relaxed as possible” (RLX).

Congruent Trial Incongruent Trial

Exertion

Relaxed

Figure: An illustration of the Stroop task involving task blocks of congruent and incongruent trials, indicated by purple bars and yellow bars respectively, and fixation
blocks denoted by a centrally fixated cross.

Results

I T-tests (p < 0.01, FDR-corrected) of the Fisher’s Z-transformed partial correlation differences at each MCMC iteration revealed
247 significantly different edges between the EXR and RLX conditions, 226 of which lay within our functional module partition.

I Circle plots of the sum of the strengths of the significant connections between modules are provided below separately for positive
and negative connections

E F G HEXR - Positive EXR – Negative RLX– NegativeRLX– Positive

Interpretation

I BJNL revealed differences in the executive control and left frontal parietal networks.

I These networks are associated with high level cognitive function.

I Relaxed task performance featured significantly more negative connections between regions.
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