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Abstract
Computer simulators are often used as a substitute of complex real-life phenomena,
which are either expensive or infeasible to experiment with. This paper focuses on
how to efficiently solve the inverse problem for an expensive to evaluate time-series-
valued computer simulator. The research is motivated by a hydrological simulator
which has to be tuned for generating realistic rainfall–runoff measurements in Athens,
Georgia, USA. Assuming that the simulator returns g(x, t) over L time points for
a given input x , the proposed methodology begins with a careful construction of a
discretization (time-) point set of size k � L , achieved by adopting a regression spline
approximation of the target response series at k optimal knot locations {t∗1 , t∗2 , . . . , t∗k }.
Subsequently, we solve k scalar-valued inverse problems for simulator g(x, t∗j ) via the
contour estimation method. The proposed approach, named MSCE, also facilitates
the uncertainty quantification of the inverse solution. Extensive simulation study is
used to demonstrate the performance comparison of the proposed method with the
popular competitors for several test-function-based computer simulators and a real-
life rainfall–runoff measurement model.
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1 Introduction

Complex physical experiments are frequently expensive and impractical to perform.
The growth in computing power during modern times offers an alternative to carry out
such experiments via computer simulation models, such as dynamic traffic patterns of
a metropolitan intersection, energy harvesting via wind farms and tidal turbines, quan-
tification of volcanic hazards, hydrological behaviors of an ecosystem, the spread of a
wildfire, weather modeling, formation of galaxies, and so on [2, 6, 14, 26, 28, 29, 32,
33, 39, 45, 53]. Realistic computer simulators of complex physical, engineering, and
sociological phenomena are often computationally expensive to run, and thus innova-
tive design and analysis techniques have to be developed for deeper understanding of
the process.

Over the last three decades, a plethora of innovative methodologies on computer
experiments have been developed in the statistics and engineering literature. Some of
the seminal papers focus on, the emulation of simulator response via Gaussian Process
(GP) models [49], space-filling designs for building good surrogate models to emulate
deterministic simulator outputs [23], sequential design approach via a merit-based
criterion called the expected improvement for global optimization of an expensive to
evaluate simulator [24], a Bayesian approach for the emulation of simulator models
in the presence of calibration parameters [27], treed-GP for the emulation of non-
stationary simulators [17], and localized GP models [15]. For a detailed discussion
on methodological development on this topic, see Santner et al. [50], Fang et al. [12],
Rasmussen and Williams [47] and Gramacy [18].

In this paper, we focus on solving an inverse problem for expensive to evaluate
computer simulator which produces time-series outputs. Let g(x) = {g(x, t j ), j =
1, 2, . . . , L} be the simulator output for input x ∈ χ , a hyper-rectangle scaled to
[0, 1]d , where d is the input dimension. The inverse solution, S0, with respect to a
pre-specified target g0 = {g0(t j ), j = 1, 2, . . . , L}, refers to the set of inputs x that
generate g0, i.e.,

S0 = {x ∈ χ : g(x, t j ) = g0(t j ), j = 1, 2, . . . , L}.

The application that motivated this study comes from a hydrological simulation
model which predicts the rate of rainfall–runoff and sediment yield for a windrow
composting pad [11]. Here, the objective is to find the inputs of the hydrological
model that generates outputs as close as possible to the real data collected from a
watershed from the Bioconversion center at the University of Georgia, Athens, USA.

Inverse problem for expensive to evaluate scalar-valued simulators has been exten-
sively investigated in the past few years (e.g., [1, 3, 4, 9, 10, 22, 38, 42, 44, 48]). A
closely related research topic is referred to as the estimation of calibration parameters,
where the computer simulator takes two types of inputs, controllable design variables
and fixed but unknown calibration parameters. Kennedy and O’Hagan [27] proposed
a Bayesian framework that accounts for the two types of inputs and models a potential
systematic discrepancy between the observed field data and the simulator response.
This model received significant attention in both computer experiments and engineer-

123



Journal of Statistical Theory and Practice            (2023) 17:23 Page 3 of 27    23 

ing literature, for instance, Tuo and Wu [52], Pratola et al. [43], Brown and Hund [8],
Perdikaris and Karniadakis [40], and Perrin [41].

For simulators with time-series response and only controllable inputs, the inverse
problem literature includes Bhattacharjee et al. [5], Ranjan et al. [46], Toscano-
Palmerin and Frazier [51], Vernon et al. [53], and Zhang et al. [56]. We focus on
this setting. Vernon et al. [53] developed an innovative history matching (HM) algo-
rithm for solving the inverse problem of a galaxy formation model called GALFORM.
This is multistage sampling strategy, which intelligently eliminates the implausible
points from the input space and returns a set of plausible candidates. The main idea
was to first select a handful of time-points from the target response series (referred to
as the discretization point set (DPS) = {t∗1 , t∗2 , . . . , t∗k }, where 1 ≤ t∗1 < · · · < t∗k ≤ L)
and then optimize a joint discrepancy criterion (called the implausibility function)
between the target and predicted response from the GP surrogates of g(x, t∗j ) − the
scalar-projection of the process at DPS locations t∗j , for j = 1, . . . , k. It turns out that
the HM algorithm requires too many simulator runs, and for expensive to evaluate
computer simulators, this approach would be unaffordable. Recently, Bhattacharjee
et al. [5] proposed a small modification in the sampling strategy of the HM algorithm
which reduced the required simulator runs without compromising the accuracy of the
inverse solution.

In a simplified approach to such an inverse problem, Ranjan et al. [46] introduced
a new pseudo-scalar-valued simulator w(x) = ‖g(x) − g0‖ and then find the min-
imizer of w(x) using a global optimization method − build GP surrogate for w(x)
coupled with sequential design techniques via the expected improvement (EI) crite-
rion developed by Jones et al. [24]. In the same spirit, Zhang et al. [56] minimized
w(x) = ‖g(x)−g0‖; however, instead of fitting a scalar-valued GP surrogate ofw(x),
the authors used a singular value decomposition (SVD)-based GP surrogate [21] for
g(x) and developed a saddlepoint approximation of the EI expression of Jones et al.
[24], referred to as the saEI approach.

In this paper, we proposed a newMSCE method for solving an inverse problem for
time-series-valued computer simulators. The proposed approach has two key compo-
nents. Inspired by the HM algorithm, we first discretize the target response series at
DPS. However, Bhattacharjee et al. [5] and Vernon et al. [53] used an ad hoc method
(or a subjective expert opinion) for choosing the DPS. We suggest a more formal
approach by fitting a regression spline to the target series g0 and then identify the
desired DPS as the optimal knot locations. We investigated both the sequential search
and the simultaneous search methods for finding optimal knots. Then, we solve k
scalar-valued inverse problems, i.e., estimate

S j = {x ∈ χ : g(x, t∗j ) = g0(t
∗
j )}, j = 1, 2, . . . , k.

Finding S j is essentially a contour estimation problem, as in Ranjan et al. [44]. As
per our knowledge, the existing literature on inverse problems for time-series-valued
simulators (e.g., [46, 53, 56]) uses the global minimization criterion by Jones et al.
[24]. In this paper, we propose using the contour estimation EI criterion for iteratively
solving these k scalar-valued inverse problems. At the end, the inverse solution of
the underlying dynamic simulator is obtained by taking the intersection of all scalar-
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valued inverse solutions, which is further used to quantify the uncertainty associated
with the estimated inverse solution. Theoretical result that establishes the estimation
of the desired inverse solution is also presented. Extensive simulation studies have
been used to demonstrate that the proposed approach is more accurate and reliable
than its competitors. The results are compared with those of modified HM algorithm
[5], scalarization method [46], and saEI method [56].

The remaining sections are outlined as follows: Section 2 reviews the concepts
integral to the proposed method and the competing approaches, i.e., the scalariza-
tion method by Ranjan et al. [46], the HM approach proposed by Vernon et al. [53]
with modification in Bhattacharjee et al. [5], and the saEI method by Zhang et al.
[56]. Section 3 provides the elements of the proposed multiple scalar-valued contour
estimation (MSCE) method, uncertainty quantification of the inverse solution, and
thorough implementation details of the steps. In Sect. 4, we present simulation studies
to establish the superiority of the proposed method via three test function-based simu-
lator. Section 5 discusses the real-life motivating hydrological-simulation application.
We provide some concluding remarks in Sect. 6.

2 Review of ExistingMethodology

In this section, the existing methods that set precedence for this paper are presented.
We briefly review GP-based models used as surrogates of the simulator outputs and
the EI criterion for choosing the follow-up trials in the sequential design framework.
Subsequently, the scalarization method by Ranjan et al. [46], HM algorithm of Vernon
et al. [53] and Bhattacharjee et al. [5], and saEI method by Zhang et al. [56] are also
reviewed.

2.1 Gaussian Process-basedModels

The evaluation of a computer simulator for complex phenomena can often be com-
putationally expensive, and hence, the emulation via a statistical surrogate becomes
much more practical. Sacks et al. [49] presents a GP model as a useful surrogate of
deterministic simulator output. For a set of input–output combinations, a stationary
GP model, also called as the ordinary Kriging, assumes:

y(xi ) = μ + Z(xi ), i = 1, . . . , n,

where μ is the mean and Z(xi ) is a GP with E(Z(xi )) = 0 and a covariance structure
of Cov(Z(xi ), Z(x j )) = σ 2R(θ; xi , x j ). There are several popular choices of R(·, ·),
e.g., Gaussian correlation, power-exponential family, and Matérn correlation. The
power-exponential correlation structure will have the (i, j)th term Ri j (θ) as:

R(Z(xi ), Z(x j )) =
d∏

k=1

exp

{
− θk | xik − x jk |pk

}
for all i, j, (1)
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where 0 < pk ≤ 2 are smoothness parameters and θk measure the correlation strength.
In this paper, we assume power exponential correlation with pk = 1.95 (for numerical
stability and smoothness). The best linear unbiased predictor for the response at any
unsampled point x∗ is given by:

ŷ(x∗) = μ̂ + r(x∗)T R−1
n (y − 1nμ̂), (2)

where r(x∗) =
[
corr(z(x∗), z(x1)), . . . , corr(z(x∗), z(xn))

]T
, Rn is the n × n cor-

relation matrix with elements Ri j (as in Eq. (1)), and the prediction uncertainty is
quantified by

s2(x∗) = σ̂ 2
(
1 − r(x∗)T R−1

n r(x∗)
)

. (3)

The flexibility of the correlation structure, and the closed-form expressions for
mean prediction and associated uncertainty make the GP model a popular surrogate
for complex computer model outputs. Throughout this paper, the R package GPfit
[34] has been used to fit the basic scalar-valued GP models.

Fitting a GP model requires numerous inverse calculations of size n × n each,
whichbecomes computationally daunting asn increases andparticularly for simulation
studies when the entire exercise has to be repeated thousands of times. Gration and
Wilkinson [14] developed an R package called laGP—a local approximate GP (laGP)
model for large data sets. The main idea is to fit local GP model for prediction at any
given point in the input space. The process of finding the local set of size m(� n)

starts with a k-nearest neighbor set around the point of interest and then selecting the
remaining m − k points guided by a model-based criterion. Finally, the prediction at
the point of interest is obtained using the GP model built on this local neighborhood
set of size m. See Gramacy [15] for methodological details. In this paper, if n > 50,
laGP package has been used for all GPmodel fittings within the simulation exercises.
For n ≤ 50, we used the GPfit package.

2.2 Sequential Design

It has been established on many occasions that sequential designs outperform its
competitors for finding a pre-specified feature of interest, e.g., the global minimum
or the inverse solution, for a computationally intensive deterministic scalar-valued
computer simulator [13, 18, 24, 42, 44, 50, 56]. The basic framework consists of three
key steps, finding a good initial design, fitting the statistical surrogate and choosing
the follow-up trials by optimizing a merit-based criterion (EI is the most popular one).

In computer experiments, the popular choice for an initial design includes a space-
filling design such as a maximin Latin hypercube design (LHD) [36, 54], a maximum
projection LHD [25], uniform design, and orthogonal array-based LHD [55]. Once an
initial design is chosen, the responses are generated by evaluating the simulator at each
input. A surrogate model is then fitted to the training data (xi , yi ), i = 1, 2, . . . , n.
We use the GP / laGP model (detailed in Sect. 2.1) for this purpose. After which,
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a sequential design criterion such as EI is evaluated over the entire input space to
find the input xnew − the maximizer of EI (see [24] and [6] for details). The xnew
and corresponding true simulator response are augmented to the training set (i.e.,
n = n + 1). The surrogate (GP model) is refitted to this augmented training set. The
iterative process of optimizing EI to choose xnew and refitting the surrogate to the
augmented data is repeated until the total budget of N points is exhausted. The feature
of interest (e.g., the global optimum or the inverse solution) would be extracted from
the final surrogate fit.

2.3 Inverse Problem via Scalarization

Ranjan et al. [46] assumed w(x) = ‖g(x) − g0‖ to be the output of a new scalarized
simulator, which is expensive to evaluate, and thus, the popular sequential approach
by Jones et al. [24] was applied to find the global minimum. That is, a GP model
(Sect. 2.1) is used to emulate the scalar-valued response w(x), and the EI criterion by
Jones et al. [24] dictates how to choose the follow-up points. Note that in Sect. 2.1,
y(x) denotes a scalar simulator response, whereas in this section, we denote w(x) as
the scalar response. The EI criterion, as per the Gaussian predictive distribution with
mean and variance given by (2) and (3), has a closed-form expression:

E[I (x)] = (wmin − ŵ(x))�

(
wmin − ŵ(x)

s(x)

)
+ s(x)φ

(
wmin − ŵ(x)

s(x)

)
,

where φ(·) and �(·) are the normal probability density function (pdf) and cumulative
distribution function (cdf), respectively.

The EI-based approach has gained immense popularity because it facilitates a bal-
ance between the exploration and exploitation, which further implies that the entire
input space is explored thoroughly and hence eventually all global minima would be
found. That is, if there are more than one solution of the inverse problem, then the EI-
based approach would be able to detect them. Finally, the inverse solution is obtained
by minimizing the responses over the training data or the predicted response over a
dense set via the final fitted surrogate.

2.4 EI Criterion for Contour Estimation

For a scalar-valued deterministic computer simulator, Ranjan et al. [44] developed
an EI criterion for estimating the inputs that lead to a pre-specified target response
y(x) = a. The proposed improvement function is given by:

I (x∗) = ε2(x∗) − min
[
{y(x∗) − a}2, ε2(x∗)

]
.

where ε(x∗) = αs(x∗) for a positive constant α (e.g., α = 0.67 corresponds to
50% confidence, and α = 1.96 represents 95% level of confidence, under normality),
s(x∗) is defined in (3), and a is the pre-specified target response. Hence, the EI value
(which is simply the expected value of the improvement function under the predictive
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distribution y(x∗) ∼ N (ŷ(x∗), s2(x∗))) is:

E[I (x∗)] =
[
ε2(x∗) − {ŷ(x∗) − a}2

]{
�(u2) − �(u1)

}

+s2(x∗)
[
{u2φ(u2) − u1φ(u1)} − {�(u2) − �(u1)}

]

+2
{
ŷ(x∗) − a

}
s(x∗)

{
φ(u2) − φ(u1)

}
, (4)

where u1 = [a − ŷ(x∗) − ε(x∗)]/s(x∗), and u2 = [a − ŷ(x∗) + ε(x∗)]/s(x∗).
Similar to the EI in Jones et al. [24], this EI criterion also facilitates the balance

between local and global searches. In other words, all pieces of the contours are
expected to be detected eventually.

2.5 History Matching for the Inverse Problem

HM approach was developed by Vernon et al. [53] and was subsequently modified
by Bhattacharjee et al. [5] to solve the inverse problem for a time-series-valued
computer simulator. The HM approach starts by selecting a handful of time-points
{t∗1 , t∗2 , . . . , t∗k }, which are referred to as a DPS and has size k, which is significantly
smaller than L , the total length of the response series. The said approach uses the simu-
lator outputs at only theDPS time-points and approximates the desired inverse solution
by eliminating the set of implausible points from the input space via an innovative
criterion called the implausibility function.

The HM algorithm is implemented via a multistage sampling technique. First, a
large space-filling initial design {x1, x2, . . . , xn} is used to evaluate the time-series-
valued simulator and extract the scalar projections of the input–output training set at
the DPS locations. Subsequently, the algorithm iterates between the following four
steps:

(1) For j = 1, 2, . . . , k, fit k scalar-valued GP surrogates to {(xi , g(xi , t∗j )), i =
1, 2, . . . , n}, where n is the size of the training set.

(2) Evaluate a criterion called the implausibility function over a large test set. For
each j = 1, . . . , k, the implausibility criterion is defined as:

I M j (x) = | ĝ(x, t∗j ) − g0(t∗j ) |
st∗j (x)

,

where ĝ(x, t∗j ) is the predicted response derived from the GP surrogate corre-
sponding to the simulator response at time point t∗j and st∗j (x) is the associated
uncertainty. From the test set, points are deemed implausible if I Mmax (x) > c,
where c is the predetermined cutoff chosen in an ad hoc manner and

I Mmax (x) = max{I M1(x), I M2(x), . . . , I Mk(x)}.

Points in the complement set are said to be plausible.
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(3) Select the plausible design points, augment it to the training set, and go to Step 1.
(4) At the end of the procedure, the approximate inverse solution is extracted from the

training set or from the predicted response over a dense set via the final surrogate.

Bhattacharjee et al. [5] recommended a modification in the HM algorithm and used
a small initial design as per the popular n0 = 10 · d rule-of-thumb [19, 31] as com-
pared to a large initial design. This helped in achieving the desired accuracy of the
inverse solution with significantly fewer runs. However, the size of the training set in
Bhattacharjee et al. [5] can still become very large very fast because the algorithms rec-
ommend choosing all plausible points in Step 3. For instance, their (Matlab-simulink)
hydrological model example required 461 simulator runs for estimating the inverse
solution. In this paper, we implement a subsampling strategy via clustering and then
select only the cluster centers instead of all plausible points. This will ensure that the
input space is explored thoroughly with much fewer training points. We follow this
twofold modified HM algorithm for all simulations.

2.6 Saddlepoint Approximation-based EI

Zhang et al. [56] used SVD-based GP model originally developed by Higdon et al.
[21] for fitting a surrogate to the time-series output g(x) of a computer simulator.
Although slightly more complicated, but here also, the predicted mean response and
the associated uncertainty (i.e., mean square error) have closed-form expressions.
Subsequently, the authors applied the EI criterion in Jones et al. [24] to w(x) =
‖g(x) − g0‖, i.e.,

E[I (x)] = E[(wmin − w(x))+|Data],

however, the expectation had to be computed with respect to the SVD-GP—the sur-
rogate model for g(x). Here, the authors proposed a saddlepoint approximation for
computing E[I (x)]. They also developed an R package called DynamicGP which
implements this methodology. The usage of the most important function called saEI
is shown as follows:

saEIout = saEI(xi,yi,yobs,nadd,candei,candest,func,...,
nthread=4,clutype="PSOCK")

where xi and yi denote the initial training data, yobs is the target response,
nadd is the number of follow-up points to be added, candei, candest are the
test sets for optimizing the saEI criterion and extracting the inverse solution, respec-
tively. Since the SVD-GP model fitting and saddlepoint approximation calculations
are computationally intensive, parallel computing environment can also be used via
specifying the number of threads (nthread) and cluster type (clutype).

3 ProposedMethodology

Most of the existing methodologies to solve the inverse problem for simulator with
time-series response use the global minimization criterion by Jones et al. [24]. We
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propose a methodology that is based on the usage of scalar-valued contour estimation
criterion byRanjan et al. [44] for the inverse problemunder a limited budget constraint.

Similar to the HM algorithm, we discretize the simulator response at a DPS of
size k(� L) that aims to capture the important features of the target response series.
However, instead of choosing the DPS via a subjective judgement, we propose using
a systematic construction approach via regression spline approximation of the target
series g0. Subsequently, we propose to iteratively solve the k scalar-valued inverse
problems using the efficient contour estimation method (outlined in Sects. 2.2 and
2.4). Finally, the desired inverse solution is obtained by taking the intersection of
these k sets of inverse solutions. There are several parts of the proposed methodology
that requires detailed discussion.

Construction of DPS Fit a (regression) cubic spline function to the target response
series g0 and then use the set of knot locations as the DPS. However, finding optimal
set of knots is a classical yet challenging problem.

Two obvious approaches to address this issue are “simultaneous search” and
“sequential search”. The “simultaneous search” finds the best k-knot combination
by simultaneously searching the k-dimensional time-point grid with

(L
k

)
options and

optimize a goodness-of-fit criterion like mean-square error (MSE) for the fitted spline
approximation. Subsequently, the optimal value of k, and the corresponding set of
knots, can be obtained using the elbow method, where the MSE is plotted against the
number of knots and the objective is to identify the elbow of the plot.

On the other hand, the alternative “sequential search” follows a greedy approach for
constructing theDPS. The idea is similar to the construction of a regression tree, where
the split-points are essentially the knot locations. That is, we start with no knots and
find the best location for the first knot by minimizing the overall MSE as per the spline
regression fit. The optimal location for the second knot is found by fixing the first knot
location. Continuing further in this manner, the search for optimal location for the j-th
knot assumes that the optimal location of the previous ( j −1) knots is known. Finally,
the optimal number of knots is found using the elbow method. For implementation,
the R package splines is called upon for this purpose, while the command bs()
is used for finding B-spline basis functions in the linear model environment.

We quickly illustrate the sequential search scheme by applying it to a test function.
Suppose the simulator outputs are generated via Easom function [35],

g(x, t j ) = cos(x1) cos(x2) exp
{ − (x1 − π t j )

2 − (x2 − π)2)
}
,

where t j are L equidistant time points scaled in [0, 1] for j = 1, . . . , L = 200,
and the input space is scaled to (x1, x2) ∈ [0, 1]2. We select the target response g0
corresponding to the input set x0 = (0.8, 0.2). Pretending that x0 is unknown, the
objective of the inverse problem would be to find x = (x1, x2) such that g(x, t j ) ≈
g0(t j ) for all j = 1, . . . , 200.

The first element of the DPS is obtained by minimizing theMSE of the cubic spline
fitted to the target response over each of the possible 200 time points as the sole knot.
We found the optimal first knot at time point t∗1 = 145. Keeping the knot at time
point t∗1 = 145 fixed, we repeated the process and tried the remaining 199 options and
found the second optimal knot at time point t∗2 = 37. The process continued, and the
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Time Points
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Fig. 1 Easom function: Black solid curve shows g(x0). The vertical dashed lines depict the ordered posi-
tioning of optimal knots for fitting cubic splines to the time series. Red curve shows the reconstructed
response using DPS as knots

locations of ten optimal knot are {145, 37, 132, 47, 120, 55, 113, 63, 104, 174} (see
Fig. 1).

In Fig. 1, we have illustrated the sequential selection of 10 knots; however, in reality,
the required number of knots may be different. The elbow plot method investigates the
relationship between MSE and the number of knots and finds the elbow of the plot,
i.e., the second derivative reaches a positive value. This would allow for a good fit
while maintaining the efficiency of the knots used. Figure 2 shows the corresponding
“MSE vs. the number of knots function” plot for the Easom function. In this case, the
elbow cutoff is 3. That is, the recommended discretization-point-set (DPS) for this
time-series response would be {145, 37, 132}.
Remark 1 Computational Cost: Although more accurate than its competitors, the
simultaneous search is computationally too expensive (dimension of the search space,(L
k

)
, grows exponentially for large k). As a result, it may be preferred to settle with

a slightly suboptimal (but computationally tractable) set of knots, perhaps via mini-
mizing the goodness-of-fit criterion (e.g., MSE) over a randomly chosen large subset
of the Lk grid. Alternatively, one can use the sequential search method discussed
above. For all inverse problem estimation examples considered in this paper, we have
used the sequential search method for constructing DPS. Of course, in some cases,
such a suboptimal method may require a few more discretization points in the DPS to
reach the desired accuracy level as compared to the “simultaneous search” method. In
Appendix, we presented a more detailed comparison of the computational costs.

For a quick reference,we compare the accuracyof the two searchmethods forEasom
test function (see Fig. 1), where the target series is generated using x0 = (0.8, 0.2)
with additional Gaussian noise. We fitted cubic-spline regression model to the target
serieswith j knots identified using the two searchmethods. For finding optimalDPS of
size j under the simultaneous search method, we followed a computationally cheaper
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Fig. 2 Easom function: “Mean-squared error versus the number of knots” for 10 knots for spline regression
added sequentially one at-a-time

approximation and randomly selected 200 · j candidate points instead of fitting (200
j

)

MLR models. Figure 3 compares the log(MSE) of the fitted models.
It is clear from Fig. 3 that the simultaneous search method (although computation-

ally more expensive) provides slightly more accurate set of knots (i.e., DPS) for the
initial values of j , but, eventually the sequential search scheme exhibits its superior
performance. See Appendix for more comprehensive computational cost comparison.

Multiple Scalar-valued Contour Estimation (MSCE) After finding a reasonable
DPS, we sequentially estimate k scalar-valued inverse solutions S j = {x ∈ [0, 1]d :
g(x, t∗j ) = g0(t∗j )} for j = 1, 2, ..., k. Suppose our total simulator run budget is N ,
then, the process starts by choosing an initial design of size n0(< N ) from the input
space [0, 1]d , for which we use a maximum projection Latin hypercube design [25].
The remainder of the budget (N −n0) is equally distributed in to k parts for estimating
S j , j = 1, 2, . . . , k. That is, the first inverse problemwould estimate S1 using n0-point
initial design and (N −n0)/k follow-up trials chosen one at-a-time by maximizing the
EI criterion (4) and updating the GP surrogate iteratively. The augmented data of size
n0 + (N −n0)/k are now treated as the initial training set for the second scalar-valued
inverse problem. Thus, one would estimate S j using the initial training set of size
n0 + ( j − 1)(N − n0)/k, obtained after solving the previous ( j − 1) scalar-valued
inverse problems, and (N − n0)/k follow-up trials via EI optimization.

For the Easom function, since the DPS is of size three, we need to solve three scalar-
valued inverse problems. We set a total training size budget of N = 50 points and
initial design of size n0 = 15. The budget of follow-up points, N −n0 = 35, is divided
approximately evenly for the three inverse problems (i.e., 35 = 12+ 12+ 11). When
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Fig. 3 Easom Function: log(MSE) comparison of splines fitted to the target response, with optimal knots
found using two methods: simultaneous search (red squares) and sequential search (black dots)

Fig. 4 Easom function: Training data is depicted by dots and the estimated contours are shown by solid
curves. The black dots correspond to the initial design, whereas red, green, and blue dots represent the
follow-up points obtained via EI optimization for the three scalar-valued contour estimation at DPS =
(145, 37, 132), respectively

computing the EI criterion, we set α = 0.67 which corresponds to 50% confidence
interval under normality. Furthermore, since the input space is only two-dimensional
unit square, we use 5000-point random Latin hypercube designs for maximizing the
EI criteria for sequentially adding follow-up trials. The left panel of Fig. 4 shows
the three estimated contours along with selected follow-up points corresponding to
t∗1 = 145 (in red), t∗2 = 37 (in green) and t∗3 = 132 (in blue). The right panel depicts
the convergence over iterations as the follow-up points are added to the training data.
The progress is measured by the minimum value of ‖g(xi ) − g0‖ over the training
data.
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From Fig. 4, it is clear that for the first contour estimation, more follow-up points
focus on global exploration for better overall understanding of the process as compared
to the local search for accuracy enhancement of the contour estimate. For the second
and third contour estimations, the follow-up points tend to focus more and more on
the local search. The second panel of Fig. 4 shows that a good approximation of the
inverse solution was obtained after a few additional points were added for the second
contour estimation problem.

Remark 2 Sensitivity of the order of DPS: In principle (i.e., theoretically), if all scalar-
valued inverse problems have been solved accurately, then the overall inverse solution
of the simulator with time-series response should also be estimatedwith high accuracy.
However, in practice, it may be tempting to think that the order in which the three
(in general, k) scalar-valued inverse problems are solved may affect the accuracy
of the overall inverse problem for the underlying time-series-valued simulator. Our
investigations based on the simulated examples considered in this paper show that the
order does not play a significant role. For instance, Fig. 5 depicts the sensitivity of the
order of DPS in the sequential contour estimation approach for the Easom function
example. In Fig. 5, the point clouds represent S1, S2, S3 and ∩3

i=1S j in the order of
black, red, blue, and yellow for different DPS sequences shown in the figure captions.

Of course, this demonstration based on finitely many examples does not guarantee
that the order will not matter for every MSCE implementation of an inverse problem
for time-series-valued simulators. If the fitted surrogates at each t∗i are adequate to
find the true inverse solution, then clearly the ultimate inverse solution found at the
end should not differ.

Extraction of theOverall Inverse Solution S0:Weapproximate S0 with∩k
j=1S j—the

intersection of k scalar-valued inverse solutions obtained at the discretization-point-
set (DPS). If there exists a solution of the underlying inverse problem for the dynamic
(time-series-valued) simulator, then ∩k

j=1S j will be nonempty. The following result
establishes the existence of the inverse solution as per the proposed approach.

Theorem 1 Let S0 = {x ∈ χ : g(x, t j ) = g0(t j ), j = 1, 2, . . . , L} be the true inverse
solution for a time-series-valued simulator g(x)with respect to g0, and S j = {x ∈ χ :
g(x, t∗j ) = g0(t∗j )} be the inverse solution at the j-thDPS point t∗j , then, S0 ⊆ ∩k

j=1S j .

Corollary 1 If ∩k
j=1S j represents a single cluster, then S0 is unique.

Practical Implementation If∩k
j=1S j generates multiple distinct clusters, then either

the underlying inverse solution has multiple inverse solutions or we have detected
some false solution along with the correct solution. This can be further ascertained by
increasing the size of DPS and follow the proposed approach.

We have omitted the proof of Theorem 1, as it is straightforward and not giving
additional insights to this discussion.

The desired inverse solution would be

x̂opt = argmin{‖g(x) − g0‖, x ∈ ∩k
j=1S j }.
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(a) (b)

(c) (d)
Fig. 5 Easom Function: Comparison of the inverse solution estimate as per the proposed MSCE method,
with n0 = 15 and N = 50 points

To implement this, we obtain k GP surrogates ĝ(x, t∗j ), after the final iteration,
using all N training points found in the due process of estimating k contours. Instead
of the exact match, we accept the approximate inverse solutions as S j (δ) = {x :
|ĝ(x, t∗j )−g0(t∗j )| < δ} for some small δ, for each time point t∗j in DPS. This accounts
for the round off errors and other approximations made during the implementation.
This tolerance δ has to be judiciously chosen to accurately estimate the inverse solution
set.

For Easom function example, it is clear from Figs. 4 and 5 that the three contours
intersect on a common point. Here, we set δ = 10−5, and the final inverse solution
obtained is x̂opt = (0.8188, 0.2029). Figure 6 shows that the simulator response at x̂opt
(blue dashed curve) is virtually indistinguishable as compared to the target response
(black solid curve).
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Algorithm 1: Multiple scalar-valued contour estimation (MSCE) approach
Input : (1) Input parameters: d, L, n0, N

(2) time-series-valued computer simulator: {g(x, t j ), j = 1, ..., L}
(3) Target response: {g0(t j ), j = 1, . . . , L}
(4) Tolerance: δ

Output: (1) Final training set: xxN×d and yyL×N
(2) Estimated inverse solution: x̂opt

1 Construct a DPS of size k(� L) that would capture the important features of the target time-series
response, say, (t∗1 , t∗2 , . . . , t∗k ). See Sect. 3 for the proposed regression spline-based methodology.

2 Choose n0 points in χ = [0, 1]d using a maximum projection Latin hypercube design. Obtain the
corresponding simulator response matrix YL×n0 .

3 for j = 1, . . . , k do
4 Use contour estimation method for scalar-valued simulator to estimate

S j (x) = {x ∈ χ : g(x, t∗j ) = g0(t
∗
j )}. Assume the size of initial design is

n0 + ( j − 1) · (N − n0)/k, whereas (N − n0)/k follow-up trials are added sequentially one
at-a-time as per the EI criterion in Sect. 2.4.

5 Augment the follow-up points to the initial design for the ( j + 1)-th scalar-valued inverse
problem.

6 Fit final k GP surrogates to g(x, t∗j ) using all N training points. Obtain

S j = {x : |ĝ(x, t∗j ) − g0(t
∗
j )| < δ} and Uj = {x : |ĝ(x, t∗j ) − g0(t

∗
j )| < αs(x, t∗j )} for

j = 1, 2, . . . , k.

7 Extract the final inverse solution as x̂opt = argmin{‖g(x) − g0‖, x ∈ ∩k
j=1S j }, and report the

spread of ∩k
j=1Uj as the associated uncertainty measure.

This notion of extracting the inverse solution via ∩k
j=1S j can be further extended

to quantify the uncertainty in the inverse solution estimate. In spirit of the formulation
of the improvement function in Sect. 2.4, define

Uj = {x ∈ χ : |ĝ(x, t∗j ) − g0(t
∗
j )| < αs(x, t∗j )}, j = 1, 2, . . . , k,

where ĝ is obtained from the final fit. Assuming S0 is unique, and ∩k
j=1S j is non-

empty, the spread of ∩k
j=1Uj can be taken as a measure of uncertainty in estimating

the inverse solution. It is intuitive to infer that the spread of ∩k
j=1Uj will converge to

Fig. 6 Easom function: The left panel shows the target response in black solid line and the simulator
response at xopt is shown by the dashed red curve. The right panel presents the difference g0(t)−g(x̂opt , t)
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Fig. 7 Easom function: Black dots represent the target response, the red curve shows the best estimate of
the inverse solution, and the gray curves show the responses corresponding to ∩k

j=1Uj

zero as the size of the training data increase to infinity. Here spread(∩k
j=1Uj ), later

abbreviated as spread(Uj ) in Tables 1 and 2, is equal to
∑d

r=1 Var(xr ), where xr is
the vector of r th coordinate from the estimated inverse solution ∩k

j=1Uj . Note that
Uj = S j (δ) for δ = αs(x, t∗j ).

We summarize the key steps of the proposed MSCE approach in Algorithm 1.
Approximate Inverse Solution If the simulator output and/or the target response

are noisy, then the exact match for the inverse solution would not exist, and hence, the
approximation using ∩k

j=1S j (δ) and ∩k
j=1Uj are viable options to obtain the closest

possible inverse solution. The target response in our hydrological model is noisy
(see Sect. 5). For a quick illustration, we introduce a random Gaussian noise term in
the Easom simulator output (i.e., the time-series response is g(x, t) + ε(t)) and the
target response corresponds to the same x0 = (0.8, 0.2), DPS = (145, 37, 132) and
n0 = 15 and N = 30. Figure 7 presents the simulator responses corresponding to
x ∈ ∩k

j=1Uj and the best estimate of the inverse solution.
Given that the simulator returns noisy output, the final estimate appears to be a

reasonably good approximation of the desired inverse solution.

4 Simulation Studies

In this section, we use three different test function-based time-series-valued simulators
to compare the performance of the proposed method with the modified history match-
ing (HM) algorithm [5, 53], the naive scalarization method [46], and the saddlepoint
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approximation-based EI (saEI) approach [56]. For performance comparison between
the four methods, we use three popular goodness-of-fit measures called R2, RMSE,
normD, and the uncertainty measure proposed in Sect. 3 (i.e., the spread of ∩k

j=1Uj ).

The objective would be to maximize R2 and minimize RMSE, normD, and the spread
of ∩k

j=1Uj .

• Root-mean-squared error given by

RMSE =
⎛

⎝ 1

L

L∑

j=1

| g(x̂opt , t j ) − g0(t j ) |2
⎞

⎠
1/2

measures the discrepancy between the simulator response at the estimated inverse
solution x̂opt and the target response series g0.

• Coefficient of determination R2 of the simple linear regression model fitted to the
estimated inverse solution and the target response, i.e., R2 of the following linear
regression model

g0(t j ) = g(x̂opt , t j ) + ψ j , j = 1, 2, . . . , L,

with the assumption of i.i.d. error ψ j .
• Normalized discrepancy (on log-scale), between the simulator response at the
estimated inverse solution and the target response

normD = log

(∥∥g0 − g
(
x̂opt

)∥∥2
2

‖g0 − ḡ01L‖22

)

where ḡ0 = ∑L
t=1 g0(t)/L and 1L is an L-dimension vector of ones. Note that

1 − exp(normD) is a popular goodness-of-fit measure and often referred to as
Nash–Sutcliffe efficiency [37].

For each test function, 100 replications were run for different initial training data
obtained via maxPro LHD [25], random test sets for optimizing the follow-up criteria,
and candidate sets for extracting the inverse solutions.We also prefixed the target series
(consequently the DPS) and the n0 and N combination. Note that the implementation
of scalarization method, saEI and MSCE, requires sequential augmentation of one
follow-up trial at-a-time by maximizing some criteria, and hence, prefixing the initial
design size (n0) and a total budget (N ) is in sync with these three methods. However,
the (modified) HM approach accumulates follow-up points in batches, and thus, the
total runsize will vary slightly with the initial design and/or the test sets.

4.1 Example 1: Easom Function [35] contd.

We begin by revisiting the illustrative example discussed in Sect. 3 to compare the
inverse solutions arrived at by the four methods. Recall that the initial design size
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Fig. 8 Easom Function: GOF comparison between the saEI method, scalarization method, modified HM
algorithm, and the proposed MSCE approach

Fig. 9 Easom Function: Distribution of x̂opt : comparison between the saEI, scalarization method, HM
algorithm, and the MSCE approach. Red dot represents the true x0 that generated g0

is set to n0 = 15, the total runsize to N = 50, the target series corresponds to
x0 = (0.8, 0.2) which led to DPS = (145, 37, 132). Figure 8 compares the three
goodness-of-fit (GOF) measures (R2, RMSE and norm-D) for all four methods over
different replications.

For better visual comparison, we have depicted the distributions of log(RMSE),
log(normD) and log(R2 − 0.9). It is evident from Fig. 8 that MSCE outperforms
the other competitors by a big margin with respect to all GOF measures. We also
compared the accuracy of estimated inverse solutions over the replications (see Fig.
9).

The left and right panels of Fig. 9 show the boxplots of x̂opt for x1 and x2,
respectively, for the four competing methods. The larger the boxplots, the bigger
the uncertainties associated with the corresponding methods. Figure 9 shows that all
methods are able to estimate the inverse solution, but the proposedmethodMSCE does
it more accurately (i.e., the variation is smallest around the true value) as compared
to the other competitors. As an alternative means of uncertainty quantification (UQ),
we computed the total dispersion of ∩k

j=1Uj for all methods in different replications,

123



Journal of Statistical Theory and Practice            (2023) 17:23 Page 19 of 27    23 

Fig. 10 Easom Function: Distribution of the log-spread of ∩k
j=1Uj - UQ in the estimate of the inverse

solution. Comparison between the saEI, scalarization method, HM algorithm, and the MSCE approach

Table 1 Performance comparison of the four methods (saEI, Scalarization, HM and the proposed MSCE)
with respect to four goodness-of-fit measures: R2, RMSE, norm-D, and spread of ∩k

j=1Uj (presented in
log-scale to highlight the difference)

Methods saEI Scalar HM MSCE

(Modified) Levy function (d = 2)

Spread(Uj ) −2.1 (0.15) −2.5 (0.37) −2.1 (0.27) −3.3 (0.19)

RMSE −8.4 (1.3) −10.2 (0.88) −10.7 (0.92) −12.0 (0.59)

R-squared −0.07 (0.13) -0.003 (0.014) −0.003 (0.016) −3 × 10−5 (6×10−5)

Norm-D −1.1 (2.7) −4.7 (1.76) −5.76 (1.84) −8.9 (1.2)

Harari and Steinberg [20] function (d = 3)

Spread(Uj ) −2.2 (0.73) −2.02 (0.76) −1.73 (0.40) −3.2 (0.91)

RMSE −4.4 (0.53) −5.23 (0.60) −4.76 (0.72) −6.1 (0.41)

R-squared −1.2 (0.37) −0.77 (0.10) −0.86 (0.32) −0.7 (0.005)

Norm-D −2.0 (1.05) −3.68 (1.19) −2.74 (1.45) −5.5 (0.82)

Bliznyuk et al. [7] function (d = 5)

Spread(Uj ) −0.7 (0.027) −0.79 (0.05) −0.61 (0.027) −0.85 (0.026)

RMSE −5.8 (0.52) −5.77 (0.47) −6.55 (0.51) −7.47 (0.419)

R-squared −0.7 (0.019) −0.72 (0.044) −0.70 (0.0052) −0.69 (0.0006)

Norm-D −3.8 (1.04) −3.73 (0.94) −5.29 (1.02) −7.17 (0.84)

The numbers in parentheses denote the standard error

and the results are summarized in Fig. 10. The lower the boxplots are located on the
y-axis, the better the methods perform.

As per this UQmeasure as well, we can see that the proposedmethod gives themost
accurate results. Interestingly, the HM method gives consistently inaccurate results.
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4.2 More Test Function-Based Examples

In this section, we compare the performance of the four methods via several test
function-based time-series-valued computer simulators. All results are averaged over
100 replications. The test functions are listed as follows:

(1) Levy function: The original Levy function by Laguna and Marti [30] produces
scalar response for an arbitrary input dimension d. We have modified the test
function to generate time-series outputs. For d = 2, let

yt (x) = sin(π t)2 +
[(

t

5
− 1

)2

(1 + 10(sin(0.5π t + 1))2)

]

∗[(w1 − 1)2(1 + 10(sin(πw1 + 1))2)]
+ (w2 − 1)2(1 + (sin(2πw2))

2),

where wi = 1 + (xi − 1)/4, and xi ∈ (−10, 10). For the simulation study
in this paper, we have fixed n0 = 15, N = 45, x0 = (0.5, 0.5) and DPS =
(40, 110, 170).

(2) Harari and Steinberg [20]: The simulator takes d(= 3)-dimensional inputs x =
(x1, x2, x3) ∈ [0, 1]3 and produces time-series response as per

yt (x) = exp(3x1t + t) × cos(6x2t + 2t − 8x3 − 6)

where t ∈ [0, 1] on a 200-point equidistant grid. We assumed x0 =
(0.522, 0.95, 0.427) (drawn randomly) for generating the target series and found
DPS = (118, 26, 95) as per the algorithm outlined in Sect. 3. Furthermore, the
simulation study was conducted with the initial design size of n0 = 20 and a total
budget of N = 50.

(3) Bliznyuk et al. [7] presents an environmental model which simulates a pol-
lutant spill caused by a chemical accident. Here, the input space is x =
(x1, x2, x3, x4, x5)T ∈ [7, 13]×[0.02, 0.12]×[0.01, 3]×[30.01, 30.304]×[0, 3],
and the simulator outputs are generated as:

yt (x) = x1√
x2t

exp

(−x25
4x2t

)
+ x1√

x2(t − x4)
exp

(−(x5 − x3)2

4x2(t − x4)

)
I (x4 < t)

with t ∈ [35.3, 95]definedover a 200-point equidistant grid. The target time-series
response corresponds to x0 = (9.640, 0.059, 1.445, 30.277, 2.520)T (randomly
chosen). The corresponding DPS turns out to be (30, 7, 61, 14) and the simulation
study assumed n0 = 30 and N = 90.

It is clear from Figs. 8, 9 and 10 and Table 1 that the proposed MSCE method
significantly outperforms the three competitors (saEI, Scalar and HM methods) with
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Fig. 11 Hydrological model: Target response g0 along with a few random simulator outputs observed over
5445 time-points

respect to all four goodness-of-fit (GOF) criteria for four test function-based simulators
ranging from d = 2 to d = 5. Once again recall that the objective is to maximize R2

whereas minimize the other three GOF measures.

5 Real Application: Rainfall–Runoff Example

The motivating application in Bhattacharjee et al. [5] used a hydrological simulator −
Matlab-Simulinkmodel introduced byDuncan et al. [11]—to study the rainfall–runoff
relationship for a windrow composting pad. The following four parameters have been
identified as the inputs with most significant influence on the output: depth of surface,
depth of subsurface and two coefficients of the saturated hydraulic conductivity (Ksat1
and Ksat2). Interested readers can see Duncan et al. [11] for further details on the
hydrological model. For the inverse problem, the target response is the rainfall–runoff
data (g0) observed from the Bioconversion center at the University of Georgia, Athens,
USA. Figure 11 depicts the observed target response and a few random outputs from
the hydrological model.

It is clear from Figure 11 that the target response appears to be noisier than the
simulator response, and a little biased as well. The optimal knots in the regression
spline approximation of the target response led to DPS = {4557, 3359, 4702, 4085}.
It is important to observe that three of the time-points in DPS are between t = 4000
and t = 5000—the region with a big sudden dip. Although this clustering behavior
is different from the earlier examples, it may be expected as this drastic change in
the nature of the target series overpowers small variations in the other region. We
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Table 2 Hydrological model:
Goodness-of-fit comparisons of
the proposed MSCE methods
with the modified HM and
scalarization methods

Methods Scalar HM MSCE

spread(Uj ) 0.3053 0.2892 0.2860

RMSE 67.06 64.69 53.96

R-squared 0.8824 0.8888 0.9314

norm-D 0.1225 0.1140 0.0793

Fig. 12 Hydrological model: Black curve shows the target response, and the estimated inverse solutions
corresponding to the modified HM method are shown in blue, MSCE by the red curve, and scalarization
method by the purple curve

implement the proposedMSCEapproachwith n0 = 40-pointmaxProLatin hypercube
design as an initial design and added additional 10 follow-up points. The results
are compared with the modified HM approach and the scalarization method. The
saEI approach could not be implemented here, because the R package DynamicGP
required passing the computer simulator function, which we did not have access to in
the required format. Table 2 summarizes the GOF results.

The results shown in Table 2 are consistent with the trends from the test function-
based simulators (in Table 1). That is, the proposed MSCE approach outperforms
the other competitors in terms of finding the closest match for the observed runoff
data with respect to all four metrics. This is also evident from the visual comparison
(Fig. 12) of the simulator responses corresponding to the estimated inverse solutions
by different methods.

6 Concluding Remarks and Future Research

In this paper, we have proposed a new MSCE approach of solving the inverse prob-
lem for time-series-valued computer simulators by first carefully selecting a handful
of time-points for discretizing the target response series (called the DPS) and then
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iteratively solve multiple scalar-valued inverse problems at the DPS using the popular
sequential algorithm via expected improvement approach developed by Ranjan et al.
[44]. The final inverse solution for the underlying dynamic simulator is obtained via
the intersection of all scalarized inverse solutions. In this paper, we have suggested
using a natural cubic spline-based method for systematically finding the DPS. Based
on the our simulation study using several test functions and a real-life hydrological
simulator, it is clear that the proposed MSCE method outperforms three competing
methods: scalarization technique [46], modified HM algorithm [5], and saEI method
[56]. Althoughwe do not have any theoretical justification yet, an intuitive explanation
could be that (a) saEI uses saddlepoint approximation, which may not be very accu-
rate; (b) the scalarization method uses GP as a surrogate for the Euclidean distance
between the target response and the simulator runs at all time-points, which becomes
non-stationary around the inverse solutions, and hence could be a source of inaccu-
racy; (c) the twofold modification of the original HM method adopted in this paper
may have made it less efficient. In contrast, the proposed method carefully selects the
DPS and then uses one of the most efficient EI criterion for iteratively solving the
inverse problem.

There are a few important remarks worth mentioning. (1) When finding an opti-
mal DPS using spline-based technique, we followed a greedy “forward variable
selection”-type approach and identified one best knot at-a-time. The “best selection”-
type approach may lead to a better solution; however, it is computationally expensive
(seemingly impractical) in finding the best DPS. (2) For solving the scalar-valued
inverse problems at the j-th element of the DPS, we took the size of the initial design
be n0 + ( j − 1) · (N − n0)/k and budget of follow-up points is (N − n0)/k. Based on
our preliminary simulation study, we found no significant improvement in accuracy by
changing the order of DPS for solving the scalar-valued inverse problems. We divided
the follow-uppoint resources N−n0 equally among the k scalar inverse problems; how-
ever, an efficient distribution of total budget N can be further investigated. (3) A recent
paper [51] proposes a new Bayesian methodology for solving the inverse problem for
time-series-valued simulators. It would be interesting to compare the performance of
our proposed frequentist MSCE approach with their Bayesian optimization technique
with computationally expensive integrands. (4) Since the responses are time series in
nature, one can investigate including time-correlation structure in the steps of MSCE,
for instance, the surrogates at multiple t∗j , for improved efficiency. (5) This paper
assumes the existence of the inverse solution. Although the proposed methodology
gives approximate solution in the presence of small noise, further research is required
to find the best approximation of the inverse solution if it does not exist in the search
space.
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Appendix A: Cost of Constructing Optimal DPS

Suppose we need to construct the DPSs of size j = 1, 2, . . . , k, and the target series
has been observed over 200 time points. Then, the costs of constructing these DPSs
using the two methods are as follows.

Sequential search: The first optimal knot can be found by fitting 200 different
multiple linear regression (MLR) models with 4+1 regression coefficients each (4
for the cubic polynomial and 1 for the knot location term) and then comparing the
goodness-of-fit criterion (e.g., MSE or R2

ad j ). The second optimal knot, given the first
one is already known, can be found by fitting 199 different MLR models with 4+2
coefficients each, and so on. That is, in total, for sequentially finding k optimal knots
using this method, one needs to fit

∑k−1
j=0(200 − j) = 200k − k(k − 1)/2 different

MLR models. In terms of computational complexity, the total cost would be

k∑

j=1

(200 − ( j − 1)) · O((4 + j)3),

where O((4+ j)3 represents the computational cost of fitting a cubic-spline regression
model to the target series with j knots.

Simultaneous search: Here, the cost is heavily controlled by the resolution of the
search grid, and how exhaustive the search is. For consistency, we find the one-knot
optimal set in the exact same manner as in the “sequential search" method, i.e., search
the optimal knot over a 200-point grid. If we use the same 200-point grid, then we
would have to fit

(200
j

)
MLR models for finding optimal DPS with j knots. That is,

the total cost of constructing optimal DPS sets of size j = 1, 2, . . . , k would be

k∑

j=1

(
200

j

)
· O((4 + j)3).

Since
(200

j

)
grows very rapidlywith j , we followa computationally cheaper approxi-

mation and randomly selected 200 · j candidate points for estimating the optimal DPS
of size j . This is clearly much greater than the cost associated with the sequential
search method.

Undoubtedly, the sequential search method does not guarantee the global optimum
and may give a suboptimal estimate of the DPS. However, the sequential method will
eventually iterate through all time-points; the accuracy of DPS will increase to the
maximum achievable level.
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