Planning and analyzing clinical trials with competing risks: **Recommendations for choosing appropriate statistical methodology**

JC Poythress¹, Misun Yu Lee², and James Young²

¹Department of Statistics, University of Georgia ²Data Science, Astellas Pharma Inc.

Research Questions

- **1** How are non-parametric hypothesis tests affected when competing events are treated as censored?
- **2** Under what conditions is the estimated subdistribution hazard ratio (SHR) in the Fine-Gray (F-G) model [1] substantially different than the estimated cause-specific hazard ratio (csHR) for the event of interest in the cause-specific hazards (CSH) model?
 - Does the treatment effect on the competing event matter?
 - Does the proportion of competing events matter?

Background

- **Context**: Time-to-event data analysis.
- **Problem**: How to handle more than one type of event?
- Competing risk: An event whose occurrence precludes the occurrence of the event of interest.
- **One solution**: Treat competing events as censored and use traditional time-to-event analysis methodology.
 - This strategy can result in **biased** inference.
 - e.g. 1-KM as an estimator of the CIF is biased upwards.
 - Violates assumption of non-informative censoring.
- **Better solution**: Use methods that properly account for

Simulation Study

- Treatment and control, with N = 250 per arm.
- Data simulated under CSH and F-G models.
- Treatment effects for both competing event (CE) and primary event (PE).
- "No," "Decreases (-)," and "Increases (+)" correspond to csHR or SHR = 1, 0.67, 1.5, respectively.
- Proportion of CEs varied from 10% to 40%.
- Censoring fixed at 30%.
- Non-parametric hypothesis testing: logrank test vs.

6 Can model diagnostics detect lack-of-fit when one of the CSH model or F-G model holds, but the other is misspecified? How does model misspecification affect inference?

competing events.

• The main functions of interest, their interpretations, and appropriate models/estimators for the functions in both traditional time-to-event analysis and the competing risks setting are described in Table 1.

Gray's test [2] for H_0 : " $CIF_{1,trt}(t) = CIF_{1,ctrl}(t) \forall t$."

- Semi-parametric modelling: csHR vs. SHR.
- **Goodness-of-fit**: simulation parameters changed to induce mild or severe lack-of-fit.
 - Overlay model-based estimator of CIF on non-parametric estimator.

Table 1: Main functions of interest in traditional time-to-event analysis and the competing risks setting.

Traditional			
Name	Definition	Interpretation	Model/Estimator
Survivor function	S(t) = P(T > t)	probability that the event occurs after time t	Kaplan-Meier (KM) estimator
Hazard function	$h(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t T \ge t)}{\Delta t}$	instantaneous event rate at time t ,	Cox model:
		given that the event has not occurred before time t	$t = k \left[h_i(t) = \exp\left[oldsymbol{x}_i^T oldsymbol{eta} ight] h_0(t)$
Competing Risks			
Cumulative Incidence Function (CIF)	$CIF_j(t) = P(T \le t, \ \delta = j), \ j = 1, \dots, J$	probability of experiencing event j before time t	"KM-like" estimator (But not 1-KM)
Cause-specific Hazard (CSH)	$h_j(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t, \ \delta = j T \ge t)}{\Delta t}, j = 1, \dots, J$	instantaneous rate of event j at time t ,	CSH model:
		among individuals who are event-free up to time t	$h_{j,i}(t) = \exp\left[\boldsymbol{x}_i^T \boldsymbol{\beta}_j\right] h_{j,0}(t), j = 1, \dots, J$
Subdistribution Hazard (SH)	$\lambda_j(t) = \lim_{\Delta t \to 0} \frac{P(t \le T < t + \Delta t, \ \delta = j \{\{T \ge t\} \cup \{T \le t \text{ and } \delta \neq j\}\})}{\Delta t}, j = 1, \dots, J$	${m v}$ instantaneous rate of event j at time t ,	F-G model:
		among individuals who are event-free up to time t	$\lambda_{1,i}(t) = \exp\left[oldsymbol{x}_i^Toldsymbol{ heta}_1 ight]\lambda_{1,0}(t)$
		or experienced a competing event before time t	(other SHs left unspecified)

Results: Non-parametric Hypothesis Testing

Results: Semi-parametric Modelling

Results: Goodness-of-fit

(i) True CSH model

Estimated SHR from fitted F–G mode

-----*---*----*----*

0.25

Proportion Competing Events

0.30

0.35

·---+---

0.35

0.40

+---+--+---+--

Proportion Competing Events

Figure 3: Plots of non-parametric and model-based estimators of the CIF for the event of interest under true CSH model and

(ii) True F-G model

Figure 1: Proportion of simulations in which P < 0.05.

Summary of Results

• Non-parametric Hypothesis Testing

- Use Gray's test instead of the logrank test for testing equality of CIFs.
- The logrank test can have inflated Type I error rate when H_0 is true and poor power when H_0 is false.

• Semi-parametric modelling

• \widehat{csHR} and \widehat{SHR} differ most when the treatment affects the competing event and the proportion of competing events is large.

Goodness-of-fit

- The CSH model and F-G model both properly account for competing risks, but are **not interchangeable**.
- If one model fits the data adequately, it does not imply the other will also!
- Misspecification of the F-G or CSH model can result in poor inference if the other model is the true model.
- Traditional GOF methods only useful for detecting lack-of-fit if the proportionality assumption is severely violated.

(ii) True F-G model

Figure 2: Means of estimated hazard ratios.

Recommendations

- Do not ignore competing risks!
- Fit and report the results from both the CSH model and F-G model.
- Prespecify a preferred model and base decisions regarding the trial outcome on that model.
 - e.g. one might choose a preferred model based on convenience of model interpretation.
- Provide for a contingency plan: If there is evidence for significant lack-of-fit in the preferred model, but the other model appears to fit the data adequately, base decisions regarding the trial outcome on the model that fits the data adequately.

true F-G model.

References

[1] Jason P. Fine and Robert J. Gray. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association, 94(446):496–509, 1999.

[2] Robert J. Gray. A class of k-sample tests for comparing the cumulative incidence of a competing risk. The Annals of Statistics, 16(3):1141-1154, 1988.

Contact Information

• Email: jpoythre@uga.edu

• Phone: (706) 542 5232