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Overview
•Consider sequential change-point detection for detecting
covariance changes characterized by the subspace.

•Propose the Subspace-CUSUM procedure, which is first-order
asymptotic optimal.

•Develop a analytical methodology that includes proper parameter
optimizations for the proposed detection scheme.

Introduction

•Given a sequence of samples
x1, x2, . . . , xt . . . ,

there may be a change-point time τ where the distribution of the
data stream changes.

• Goal: Detect the change as quickly as possible from sequential data.
• Applications: swarm behavior monitoring, seismic signal
detection, power network anomaly detection, etc.
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Summer Research Description 

•  Title: Sequential change-point detection for 
structured high-dimensional streaming data 

•  Objective:  Developing new computationally efficient 
and statistically powerful algorithms to detecting 
changes online.  

– Subspace structure 

– Partially observable data 

– Data dynamic 

– Distributed processing 

•  Collaborators: Dr. Matthew Berger, Dr. Lee Seversky, 
Dr. Lauren Hue-Seversky 

e.g. Swarm behavior  
change detection 
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Problem setup

•The emerging subspace problem:

xt
iid∼ N (0, σ2Ik), t = 1, 2, . . . , τ,

xt
iid∼ N (0, σ2Ik + θuuᵀ), t = τ + 1, τ + 2, . . .

•The switching subspace problem:

xt
iid∼ N (0, σ2Ik + θu1u

ᵀ
1), t = 1, 2, . . . , τ,

xt
iid∼ N (0, σ2Ik + θu2u

ᵀ
2), t = τ + 1, τ + 2, . . .

•Equivalence: ∃Q ∈ R(k−1)×k s.t. Qu1 = 0 and QQᵀ = Ik−1.

yt = Qxt =⇒ yt
iid∼ N (0, σ2Ik−1), t = 1, 2, . . . , τ,

yt
iid∼ N (0, σ2Ik−1 + θ̃ũũᵀ), t = τ + 1, τ + 2, . . .

Detection procedure: Subspace CUSUM

•Log-likelihood ratio:

log f1(xt)
f0(xt)

= (uᵀxt)2 − σ2
(

1 + 1
ρ

)
log(1 + ρ)︸ ︷︷ ︸

drift

,

SNR ρ := θ/σ2.

Subspace-CUSUM detection scheme
•At each time t, form the sample covariance matrix using a sliding
window of size w:

Σt =
∑t+w

i=t+1 xix
ᵀ
i ,

ût is the unit-norm eigenvector corresponding to the largest
eigenvalue of Σt.

•Update the detection statistic:
St = (St−1)+ + (ûᵀtxt)2 − d.

•The stopping time:
TC = inf{t > 0 : St ≥ b}.

•Quantity d is a constant satisfying
E∞[(ûᵀtxt)2] < d < E0[(ûᵀtxt)2].

•Leveraging the independence between ût and xt, we have

E∞[(ûᵀtxt)2] = σ2, E0[(ûᵀtxt)2] = σ2(1 + ρ)
[

1− k − 1
wρ

]
=⇒ σ2 < d < σ2(1 + ρ)

(
1− k − 1

wρ

)

Performance metrics

• average run length (ARL):
E∞(TC)

•worst-case expected detection delay
(EDD) (Lorden, 1971):
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sup
τ≥0

ess supEτ [(T − τ )+|T > τ, x1, . . . , xτ ].

•Approximation: EDD = E0(TC).

Asymptotic analysis

Optimality

The Subspace-CUSUM is asymptotically first-order optimal.

Proof Sketch
• Equalizer trick: Introducing an “equalizer” δ∞ satisfying

E∞[eδ∞[(ûᵀtxt)2−d]] = 1,
(
d = − 1

2δ∞
log(1− 2σ2δ∞)

)
after equalizing, (ûᵀtxt)2 − d ≈ a log-likelihood ratio;

•Set constant ARL = γ;
•∀w, the optimal drift d which minimizes the EDD is

d∗ = σ2(1+ρ)(1−k−1
wρ )

(1+ρ)(1−k−1
wρ )−1

log
[
(1 + ρ)

(
1− k−1

wρ

)]
.

•Substitute d∗ and derive the optimal w which minimizes the EDD:

w∗ =
√

log γ ·
√

2(k−1)
ρ−log(1+ρ)

(
1 + o(1)

)
.

Numerical examples

Figure 1: Left: Minimal EDD (red) among window sizes w from 1 to 50; Middle:
Various EDD for different window sizes; Right: Corresponding optimal window size w.
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Figure 2: Real seismic data example: left, middle, and right figures correspond to the
seismic event at time 605, 2127, and 6370 respectively.
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