Factor-Adjusted Regularized Model Selection

Yuan Ke

University of Georgia

Joint work with Jianqing Fan and Kaizheng Wang

GSD 2018

October 26, 2018

イロト イ理ト イヨト イヨト

3

- Background and Motivation
- Pactor-Adjusted Regularized Model Selection Procedure
- Numerical Results
- Theoretical Results
- Summary

イロト イポト イヨト イヨト

3

Background and Motivation

イロト イポト イヨト イヨト

3

Sac

High dimensional sparse regression

Model selection has become a fundamental approach in high dimensional regression problems

- •LASSO Tibshirani,1996 •SCAD Fan and Li, 2001
- •Elastic net Zou and Hastie, 2005 •Dantzig selector Candes and Tao, 2007 and more
 - Computational biology
 - Health studies

...

- Financial engineering and risk management
- Machine learning and data mining

Fan and Li, 2006; Johnston and Titterington, 2009;

Bühlmann and Van De Geer, 2011.

イロト イポト イヨト イヨト

How close between the estimator and true parameter? **Estimation consistency** $\|\widehat{\beta} - \beta^*\| \to 0$

How well the sparse solution associates with the true model? **Selection consistency** $P(supp(\widehat{\beta}) = supp(\beta^*)) \rightarrow 1$

- Fan and Li (2001) studied the oracle property for folded concave penalty functions.
- Zhao and Yu (2006) studied sign consistency and derived the *irrepresentable condition*.

イロト イポト イヨト イヨト

- Bunea (08) and Ravikumar etal. (2010) regularized logistic regression.
- Van De Geer and Müller (2012) θ-irrepresentable condition.

and references therein.

How close between the estimator and true parameter? **Estimation consistency** $\|\widehat{\beta} - \beta^*\| \to 0$

How well the sparse solution associates with the true model? Selection consistency $P(supp(\widehat{\beta}) = supp(\beta^*)) \rightarrow 1$

- Fan and Li (2001) studied the oracle property for folded concave penalty functions.
- Zhao and Yu (2006) studied sign consistency and derived the irrepresentable condition.

ヘロト 人間 とくほとくほとう

= nar

- Bunea (08) and Ravikumar etal. (2010) regularized logistic regression.
- Van De Geer and Müller (2012) θ-irrepresentable condition.

and references therein.

LASSO estimator
$$\widehat{\beta} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \| \mathbf{Y} - \mathbf{X}\beta \|_{2}^{2} + \lambda \|\beta\|_{1} \right\}.$$

supp $(\beta^{*}) = [S] = s$

X_S and **X**_{S^c} the first *s* columns and the rest p - s columns of **X** Irrepresentable condition (Zhao and Yu, 06)

$$\|\mathbf{X}_{S^c}^T\mathbf{X}_S(\mathbf{X}_S^T\mathbf{X}_S)^{-1}\|_{\infty} < 1 - \tau, \quad \tau \in (0, 1)$$

ヘロト 人間 とくほ とくほ とう

э

Problems:

★ Hard to verify!

★ Correlated datasets!

★ Superious correlation in High-D data!

LASSO estimator
$$\widehat{\beta} \in \underset{\beta \in \mathbb{R}^{p}}{\operatorname{argmin}} \left\{ \frac{1}{2n} \| \mathbf{Y} - \mathbf{X}\beta \|_{2}^{2} + \lambda \|\beta\|_{1} \right\}.$$

supp $(\beta^{*}) = [S] = s$

X_S and **X**_{S^c} the first *s* columns and the rest p - s columns of **X** Irrepresentable condition (Zhao and Yu, 06)

$$\|\mathbf{X}_{S^c}^T\mathbf{X}_S(\mathbf{X}_S^T\mathbf{X}_S)^{-1}\|_{\infty} < 1 - \tau, \quad \tau \in (0, 1)$$

イロト イポト イヨト イヨト

э

Problems:

★ Hard to verify!

★ Correlated datasets!

★ Superious correlation in High-D data!

Sparse linear model $\mathbf{Y} = \mathbf{X}\beta^* + \epsilon$ with n = 100 and p = 200

• $\beta^* = (\beta_1, \cdots, \beta_{10}, \boldsymbol{0}_{(p-10)}^T)^T$, Nonzero $\beta \sim i.i.d$. Uniform [2, 5]

•
$$\boldsymbol{\varepsilon} \sim N_n(\mathbf{0}, \mathbf{I})$$

•
$$\mathbf{X} = (x_1, \cdots, x_p)^T \sim N_p(\mathbf{0}, \Sigma)$$

• $\Sigma =$ with diag. 1 and off-diag. some $\rho \in [0, 1)$.

★ Model selection with LASSO when ρ increase from 0 to 0.95 by a step size 0.05. For each given ρ , we simulate 200 replications.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

A motivative example

 $\star X$ axis: correlation level ρ increase from 0 to 0.95

 \star Y axis from left to right:

- Average model size selected by LASSO L:
- M: Average model size when the first false discovery (x_i , j > 10) enters the solution path
- R: Average model selection consistency rate (ratio of exactly model recovery)

イロト イポト イヨト イヨト

э

A motivative example

When covariates are strongly correlated:

★Inflated model size ★Early selection of false variables ★Selection inconsistency

イロト イポト イヨト イヨト

Sar

Beyond weakly correlated assumption

Approximate factor model

$$\mathbf{X} = \mathbf{F}\mathbf{B}^T + \mathbf{U}.$$

イロト イポト イヨト イヨト

Strongly dependent *K* latent common factors $\mathbf{F} \in \mathbb{R}^{n \times K}$

• Weakly dependent idiosyncratic components $\mathbf{U} = \in \mathbb{R}^{n \times p}$

Beyond weakly correlated assumption

$$\mathbf{X} = \mathbf{F}\mathbf{B}^T + \mathbf{U}.$$

イロト イポト イヨト イヨト

- Strongly dependent K latent common factors $\mathbf{F} \in \mathbb{R}^{n imes K}$
- Weakly dependent idiosyncratic components $\mathbf{U} = \in \mathbb{R}^{n \times p}$

Factor-Adjusted Regularized Model Selection (FarmSelect)

イロト 不得下 イヨト イヨト

= nar

Regularized *M***-estimator**

$$\widehat{\boldsymbol{\beta}} \in \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ L_n(\mathbf{Y}, \, \mathbf{X} \boldsymbol{\beta}) + \lambda R_n(\boldsymbol{\beta}) \right\},\$$

•
$$\mathbf{Y} = (y_1, \cdots y_n)^T \in \mathbb{R}^n$$
 and $\mathbf{X} = (x_1, \cdots x_n)^T \in \mathbb{R}^{n \times p}$

- L_n(Y, Xβ) convex and differentiable loss function
- $\boldsymbol{\beta}^* \in \mathbb{R}^p$ unique minimizer $\mathbb{E}L_n(\mathbf{Y}, \mathbf{X}\boldsymbol{\beta})$, sparse with *s* non-zero elements

イロト イポト イヨト イヨト

3

• $R_n : \mathbb{R}^p \to \mathbb{R}_+$ penalty and $\lambda > 0$ is a tuning parameter

Intuition

By the approximate factor model

$$\mathbf{X}\boldsymbol{\beta} = \mathbf{F}\mathbf{B}^T\boldsymbol{\beta} + \mathbf{U}\boldsymbol{\beta} := \mathbf{F}\boldsymbol{\gamma} + \mathbf{U}\boldsymbol{\beta},$$

The regularized *M*-estimator can be rewritten as

$$\widehat{\beta} \in \operatorname*{argmin}_{\gamma \in \mathbb{R}^{K}, \ \beta \in \mathbb{R}^{p}} \left\{ L_{n}(\mathbf{Y}, \mathbf{F}\gamma + \mathbf{U}\beta) + \lambda R_{n}(\beta) \right\}.$$

イロト イポト イヨト イヨト

э

Our goal:

- (1) Identifying the highly correlated latent factors \mathbf{F} .
- (2) Transform to model selection with weakly correlated U.

Step 1: Factor estimation

Fit the approximate factor model and denote $\widehat{\mathbf{B}}$, $\widehat{\mathbf{F}}$ and $\widehat{\mathbf{U}} = \mathbf{X} - \widehat{\mathbf{F}}\widehat{\mathbf{B}}^T$ the obtained estimates of \mathbf{B} , \mathbf{F} and \mathbf{U} respectively.

<u>Step 2: Augmented M-estimation</u> Define $\widehat{\mathbf{W}} = (\widehat{\mathbf{F}}, \widehat{\mathbf{U}})$ and $\theta = (\gamma^T, \beta^T)^T$. Then $\widehat{\beta}$ can be obtained by solving the following augmented problem

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{K+p}} \left\{ L_n(\mathbf{Y}, \widehat{\mathbf{W}} \boldsymbol{\theta}) + \lambda R_n(\boldsymbol{\theta}_{[K^c]}) \right\}.$$

イロト イポト イヨト イヨト

Convex opt. algorithms: coordinate descent and ADMM.

Step 1: Factor estimation

Fit the approximate factor model and denote $\widehat{\mathbf{B}}$, $\widehat{\mathbf{F}}$ and $\widehat{\mathbf{U}} = \mathbf{X} - \widehat{\mathbf{F}}\widehat{\mathbf{B}}^T$ the obtained estimates of \mathbf{B} , \mathbf{F} and \mathbf{U} respectively.

<u>Step 2: Augmented M-estimation</u> Define $\widehat{\mathbf{W}} = (\widehat{\mathbf{F}}, \widehat{\mathbf{U}})$ and $\theta = (\gamma^T, \beta^T)^T$. Then $\widehat{\beta}$ can be obtained by solving the following augmented problem

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{K+p}} \left\{ L_n(\mathbf{Y}, \widehat{\mathbf{W}} \boldsymbol{\theta}) + \lambda R_n(\boldsymbol{\theta}_{[K^c]}) \right\}.$$

- 4 回 ト 4 ヨ ト - - ヨ ト -

Convex opt. algorithms: coordinate descent and ADMM.

Estimation of factors

- Applying PCA on the the $n \times n$ matrix $\mathbf{X}\mathbf{X}^T$
- $\widehat{\mathbf{F}}/\sqrt{n}$ is estimated as top *K* eigenvectors
- Normalization $\mathbf{F}^T \mathbf{F}/n = \mathbf{I}_K$ yields $\widehat{\mathbf{B}} = \mathbf{X}^T \widehat{\mathbf{F}}/n$.

Estimation of the number of factors

Eigen-ratio method (Lam and Yao, 2013; Ahn and Horenstein, 2013)

$$\widehat{K} = \operatorname*{argmax}_{k \leq K_{max}} \frac{\lambda_k(\mathbf{X}\mathbf{X}^T)}{\lambda_{k+1}(\mathbf{X}\mathbf{X}^T)}.$$

■ *K_{max}* a prescribed upper bound

• $\lambda_k(\mathbf{X}\mathbf{X}^T)$ the *k*th largest eigenvalue of $\mathbf{X}\mathbf{X}^T$

ロトメロトメヨトメヨト

= nar

Example: sparse linear model

Penalized profile least-squares solution

$$\widehat{\boldsymbol{\beta}} \in \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \frac{1}{2n} \| (\mathbf{I}_n - \widehat{\mathbf{P}}) (\mathbf{Y} - \widehat{\mathbf{U}} \boldsymbol{\beta}) \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1 \right\},\$$

Projection representation

$$(\mathbf{I}_n - \widehat{\mathbf{P}})\mathbf{Y} = (\mathbf{I}_n - \widehat{\mathbf{P}})\widehat{\mathbf{U}}\beta^* + (\mathbf{I}_n - \widehat{\mathbf{P}})\varepsilon$$

 $\approx \widehat{\mathbf{U}}\beta^* + \varepsilon$

ヘロト 人間 ト イヨト イヨト

3

★Model selection with decorrelated design matrix $(\mathbf{I}_n - \widehat{\mathbf{P}})\widehat{\mathbf{U}}$ (Kneip and Sarda, 2011)

Numerical Results

ヘロト 人間 トイヨト イヨト

= nar

Simulated example: linear regression

Sparse linear regression

 $Y = X\beta^* + \epsilon$

- The correlation structure is calibrated from S&P 500 monthly excess returns between 1980 and 2012.
- $\beta^* = (\beta_1, \cdots, \beta_{10}, \mathbf{0}_{(p-10)}^T)^T$, with nonzero coefficients drawn from i.i.d. Uniform [2, 5].
- ϵ drawn from i.i.d. Normal distribution N(0, 1)
- Tuning parameter λ is selected by the 10-fold cross validation

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Selection Consistency rate with respect to correlation level

Correct model selection rate with respect to Γ_{∞}

 \star n = 100 p = 500 and 10,000 replications $\bigstar \Gamma_{\infty} = \|\mathbf{X}_{S^c}^T \mathbf{X}_S (\mathbf{X}_S^T \mathbf{X}_S)^{-1}\|_{\infty}$

- - ∃ →

4 D b 4 B b 4

Selection Consistency rate with fixed dim. and an increasing sample size

★ Fix p = 500, *n* increase from 50 to 150, and 200 replications

イロト イポト イヨト イヨト

Comparison of MSC rate with fixed sample size and an increasing dim.

\star Fix n = 100, p increase from 200 to 1000, and 200 replications

4 D b 4 B b 4

Empirical Application

Gene expression based classifier for Neuroblastoma trials

- German Neuroblastoma Trials NB90-NB2004 diagnosed between 1989 and 2004 Oberthuer *et al.*(06)
- 3-year event-free survival information of 246 neuroblastoma patients (56 positive and 190 negative)
- Gene expressions over 10,707 probe sites

Challenges

- High dimensionality
- Strong correlation caused by gene-gene interaction

イロト イポト イヨト イヨト

э

Strong correlation among genes

Figure: Eigenvalues (dotted line) and proportion of variance explained (bar) by the top 20 principal components

★ Top ten PC explain more than 50% of the total variance!

何トイヨトイヨト

э

★LASSO

Model selection with FarmSeelct

• High dimensional sparse logistic regression model

*****SCAD

- The correlation structure is estimated by a factor model
- The ratio method (Lam and Yao, 2012) suggests $\widehat{K} = 4$

Competing model selection methods

★Elastic net (
$$\lambda_1 = \lambda_2$$
)

イロト イポト イヨト イヨト

3

Bootstrap based out-of-sample prediction

- Select and fit a model with random 200 observations
- Prediction with the remaining 46 observations
- Classified the patient into the group with higher estimated conditional probability

Performance measure

- Selected model size
- Correct prediction rate (# of correct predictions/46).

イロト イ理ト イヨト イヨト

э

Bootstrap sample ave.	Model selection methods				
	FarmSelect	Lasso	SCAD	elastic net	
Model size	17.6	46.2	34.0	90.0	
Correct prediction rate	0.813	0.807	0.809	0.790	

Prediction performance with first 17 variables enter the solution path

	FarmSelect	Lasso	SCAD	elastic net
Correct prediction rate	0.813	0.733	0.764	0.705

イロト イポト イヨト イヨト

1

500

★ FarmSelect selects smallest model with highest prediction rate.

★ False discovery enters solutions path early for other methods.

Theoretical Results

ヘロト 人間 トイヨト イヨト

= nar

Regularized *M***-estimator**

$$\widehat{\mathbf{ heta}} = \operatorname*{argmin}_{\mathbf{ heta} \in \mathbb{R}^{K+p}} \{ L_n(\mathbf{ heta}) + \lambda \| \mathbf{ heta}_{[K]^c} \|_1 \} \quad ext{and} \quad \widehat{\mathbf{eta}} = \widehat{\mathbf{ heta}}_{[K]^c},$$

★
$$S = \operatorname{supp}(\mathbf{\theta}^*), \quad S_1 = \operatorname{supp}(\mathbf{\beta}^*), \quad S_2 = [p+K] \backslash S$$

How the correlation level among covariates will affect:

- (1) Estimation consistency
- (2) Selection consistency

<ロト < 四ト < 三ト < 三ト

Sar

Regularized *M***-estimator**

$$\widehat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^{K+p}} \{ L_n(\boldsymbol{\theta}) + \lambda \| \boldsymbol{\theta}_{[K]^c} \|_1 \} \quad \text{and} \quad \widehat{\boldsymbol{\beta}} = \widehat{\boldsymbol{\theta}}_{[K]^c},$$
$$\bigstar S = \operatorname{supp}(\boldsymbol{\theta}^*), \quad S_1 = \operatorname{supp}(\boldsymbol{\beta}^*), \quad S_2 = [p+K] \backslash S$$

How the correlation level among covariates will affect:

- (1) Estimation consistency
- (2) Selection consistency

イロト イ理ト イヨト イヨト

э

Estimation consistency: error bounds in norms

Error bounds : Under some Assumptions, if

$$\frac{7}{\tau} \|\nabla L_n(\mathbf{0}^*)\|_{\infty} < \lambda < \frac{\kappa_2}{4\sqrt{|S|}} \min\left\{A, \frac{\kappa_{\infty}\tau}{3M}\right\},\,$$

then $\operatorname{supp}(\widehat{\boldsymbol{\theta}}) \subseteq S$ and

$$\begin{split} \|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_{\infty} &\leq \frac{3}{5\kappa_{\infty}} (\|\nabla_{S}L_{n}(\boldsymbol{\theta}^*)\|_{\infty} + \lambda), \\ \|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_{2} &\leq \frac{2}{\kappa_{2}} (\|\nabla_{S}L_{n}(\boldsymbol{\theta}^*)\|_{2} + \lambda\sqrt{|S_{1}|}), \\ \|\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_{1} &\leq \min\left\{\frac{3}{5\kappa_{\infty}} (\|\nabla_{S}L_{n}(\boldsymbol{\theta}^*)\|_{1} + \lambda|S_{1}|), \frac{2\sqrt{|S|}}{\kappa_{2}} (\|\nabla_{S}L_{n}(\boldsymbol{\theta}^*)\|_{2} + \lambda\sqrt{|S_{1}|})\right\}. \end{split}$$

伺下 イヨト イヨト

 $\bigstar \tau$ denotes the correlation level between active and in-active sets

 \star κ_{∞} and κ_2 are two positive constants.

Sign consistency : In addition, if the following two conditions

$$\min\{|\boldsymbol{\beta}_{j}^{*}|:\boldsymbol{\beta}_{j}^{*}\neq0, j\in[p]\}>\frac{C}{\kappa_{\infty}\tau}\|\nabla L_{n}(\boldsymbol{\theta}^{*})\|_{\infty},\\\|\nabla L_{n}(\boldsymbol{\theta}^{*})\|_{\infty}<\frac{\kappa_{2}\tau}{7C\sqrt{|S|}}\min\left\{A,\frac{\kappa_{\infty}\tau}{3M}\right\}$$

hold for some $C \ge 5$, then by taking $\lambda \in (\frac{7}{\tau} \|\nabla L_n(\boldsymbol{\theta}^*)\|_{\infty}, \frac{1}{\tau}(\frac{5C}{3}-1) \|\nabla L_n(\boldsymbol{\theta}^*)\|_{\infty})$, the estimator achieves the sign consistency $\operatorname{sign}(\widehat{\boldsymbol{\beta}}) = \operatorname{sign}(\boldsymbol{\beta}^*)$.

イロト イ理ト イヨト イヨト

э

500

Effects of correlated covariates

- L^{∞} and L^2 errors will scale with $(\kappa_{\infty} \tau)^{-1}$ and $(\kappa_2 \tau)^{-1}$
- Sign consistency will fail under strong correlation
- Optimal error bounds \rightarrow small $\lambda \rightarrow$ overfitted model

★ Trade-off between model selection and parameter estimation due to the existence of strong correlation!

・ロト ・ 同ト ・ ヨト ・ ヨト

3

Highlights of our method

- Identify strong correlation structure among covariates .
- Transform to model selection with weak correlated components
- No price paid under weak correlation case •
- Applicable to general regularized *M*-estimators (loss function. • penalty, correlations)

★ FarmSelect method achieves both selection consistency and estimation consistency under strong correlation!

***** R-package named FarmSelect available on CRAN.

イロト イポト イヨト イヨト

э

< □ ト < 団 ト < 三 ト < 三 ト</p>