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SUMMARY

The thesis focuses on the development of statistical methodology in experimental

design with applications in global optimization. It has four chapters. In the first chapter,

a new criterion for design efficiency under model uncertainty is proposed and its properties

studied. The second chapter is devoted to identification of optimal designs to distinguish

between competing models using Hellinger distance. In the third chapter, aliasing patterns

of the mixed-level fractional designs in the form of cross arrays are discussed. Design

of experiment ideas are used in the last chapter to introduce a new global optimization

technique.

Design of experiments is an important tool in many scientific investigations. A theo-

retically fundamental and practically important question is how to choose the best design

among the available competing designs. The first two chapters of the thesis focus on this

issue. Much efforts have been devoted to this problem in the literature. Nevertheless, most

existing methods and results are limited to regular designs or two-level designs. There are

only a few general results for nonregular and mixed-level designs. To tackle this problem, a

new criterion of design efficiency under model uncertainty is studied with reference to both

regular and nonregular fractions of general factorials. Cheng, Deng and Tang (2002) pro-

posed a criterion for nonregular fractions of two-level factorials. Our research extends their

work to general factorials including asymmetrical ones. The findings are reported in the

first chapter. The criterion is expressed in terms of the departure of the design from being

an orthogonal array of strength three or four. This approach is in the spirit of the criterion

of estimation capacity. The findings are seen to be in agreement with those according to

the generalized minimum aberration and minimum moment aberration criteria.

In the next chapter, the research is done on identification of optimal designs using

Bayesian methods. This work is linked with response surface methodology, where the

first step is to perform factor screening, followed by response surface exploration using

ix



different experimental plans. Recently, Cheng and Wu (2001) proposed a new approach

that aims to achieve both goals using one design. This methodology can lead to spurious

identification of effects. Instead we propose new design and analysis methodology that aims

to overcome these difficulties. The approach is Bayesian in nature and attempts to more

directly incorporate the standard assumptions of industrial experiments into the design and

analysis. In addition we use a Bayesian design criterion based on the priors for the analysis

approach. This creates an integrated design and analysis framework. From an analysis

standpoint, the aim is to identify a subset of predictors that best explain the data. From a

design perspective, the goal is to identify the set of treatments that best facilitates the aim of

the analysis. Thus we aim to identify the optimal design. To distinguish between competing

models, the HD criterion is used, which is based on the pairwise Hellinger distance between

predictive densities.

Two- and three-level symmetric factorial and fractional factorial designs are widely used

in industrial experimentations and are discussed in detail in design of experiments textbooks.

Mixed-level fractional factorial designs are also commonly used in industries but its aliasing

relations have not been studied in full rigor. These designs take the form of a product

array. In robust parameter designs they are called cross arrays (or inner-outer array in

Taguchi’s terminology). Aliasing patterns of mixed-level factorial designs are discussed in

the third chapter. A rigorous study of mixed-level cross arrays gives a deeper insight into

the estimation properties of the design.

In the last chapter, design of experiment ideas are used to introduce a new global

optimization technique called SELC (Sequential Elimination of Level Combinations), which

is motivated by genetic algorithms but can find the optimum faster. Genetic Algorithm

is a widely used optimization technique when searching for global optimum. Although

popular, it is one of the slower optimization techniques. The SELC algorithm overcomes

this limitation. It is a nice blend of design of experiment ideas and genetic algorithms,

and it outperforms genetic algorithm in many cases. The two key features of the SELC

algorithm, namely, forbidden array and weighted mutation, enhance the performance of

its search procedure. Weighted mutation is the driving force of SELC. The process is

x



also enriched by a Bayesian method for identifying the important main effects and two-

factor interactions, which is needed for the weighted mutation. This Bayesian method

is similar to the one discussed in the second chapter. SELC starts with an orthogonal

design that helps identifying important effects. Bayesian variable selection gives better

insight into the problem. The follow-up runs are very flexible and data-driven; the weighted

mutation uses sequential learning. This SELC method is useful in many real-life examples,

ranging from computer experiments to compound identification. Illustration is given with

the optimization of three functions, one of which is from Shekel’s family. A real example on

compound optimization from pharmaceutical industry is also given. Scientific knowledge

about the problem is incorporated in choosing the starting design and constructing the

forbidden array. A follow-up experiment demonstrates the success of the SELC method in

identifying a rich set of compounds.
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CHAPTER I

DESIGN EFFICIENCY UNDER MODEL UNCERTAINTY

FOR NONREGULAR FRACTIONS OF GENERAL

FACTORIALS

1.1 Introduction

Recently, Cheng, Deng and Tang (2002), hereafter abbreviated CDT, reported results on

design efficiency, under model uncertainty, for nonregular fractions of two-level factorials.

Their criterion concerns models that include the general mean, all main effects and a selec-

tion of two-factor interactions (2fi’s) and, in the absence of prior knowledge on which 2fi’s

are active, it considers the average performance of a design over all possible models with

the same number of 2fi’s. As discussed by these authors, this approach is in the spirit of the

criterion of estimation capacity introduced by Sun (1993), and studied by Cheng, Steinberg

and Sun (1999), Cheng and Mukerjee (1998, 2001) and Mukerjee, Chan and Fang (2000)

for regular fractions.

The present article aims at extending the work of CDT on design efficiency to general

factorials including the asymmetrical ones. This calls for a substantial modification of their

mathematical techniques since, unlike in the two-level case, each factorial effect may no

longer be represented by a single treatment contrast. A Kronecker calculus for factorial

arrangements facilitates the formulation of the model matrices as well as the derivation of

the key results. The main results are presented in the next Section where we also indicate

the connection with the departure of the design from being an orthogonal array of various

strengths. This, in turn, entails a link with the generalized minimum aberration (GMA)

criterion (Tang and Deng (1999); Xu and Wu (2001)). The present criterion is applied to

18-run nonregular fractions of 2 × 33 and 2 × 34 factorials. The findings are seen to be in

agreement with those according to the GMA criterion and the minimum moment aberration
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(MMA) criterion (Xu (2003)). Proofs appear in the appendix.

1.2 Main results

Suppose there are m factors F1, . . . , Fm at s1, . . . , sm(≥ 2) levels respectively. For 1 ≤
j ≤ m, the levels of Fj are coded as 0, 1, . . . , sj − 1. Consider a possibly nonregular

fraction or design consisting of the treatment combinations ai1ai2 . . . aim, 1 ≤ i ≤ N , where

aij ∈ {0, 1, . . . , sj − 1} for every i, j, i.e.

A =




a11 a12 . . . a1m

a21 a22 . . . a2m

...

aN1 aN2 . . . aNm




(1)

Throughout, N is fixed and it is supposed that these N treatment combinations, when

written as rows, form an orthogonal array (OA) of strength two.

We assume the absence of interactions involving three or more factors. Note that alto-

gether there are W (= m(m − 1)/2) 2fi’s. For 1 ≤ w ≤ W , let H(w) be the collection of

all sets of w 2fi’s. For any h ∈ H(w), let M(h) be the model consisting of only the general

mean, all main effects and the w 2fi’s in h, and X(h) be the model matrix under M(h).

The matrix X(h) consists of blocks of columns that correspond to the general mean and

the factorial effects in M(h). The blocks of columns associated with the 2fi’s are related

to those associated with the main effects via Kronecker products. A detailed expression

for X(h) appears in (A.5) in the appendix. As usual, it is assumed that the observational

errors are homoscedastic and uncorrelated.

Under M(h), the D-criterion aims at maximizing det{X(h)T X(h)}. If one wishes to

include w 2fi’s in the model, but has no prior knowledge on which w should be included, then

it makes sense to consider the average of det{X(h)T X(h)} over all h ∈ H(w). This is the

Dw-criterion of CDT. However, it is difficult to handle this criterion algebraically. On the

other hand, minimization of tr[{X(h)T X(h)}2] is a good surrogate for the maximization of

det{X(h)T X(h)}. This happens because tr{X(h)T X(h)} is the same for all designs under

consideration; cf. (A.5), (A.7)−(A.10) and (A.18) in the appendix. Consequently, a large
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det{X(h)T X(h)} is typically accompanied by a small tr[{X(h)T X(h)}2] since both occur

when the eigenvalues of X(h)T X(h) are close to one another (the same argument shows

that minimization of tr[{X(h)T X(h)}2] would be a good surrogate also if one worked with

the A- or E-criteria.). Hence following CDT, we consider the design criterion

Ew =

(
W

w

)−1 ∑

h∈H(w)

tr[{X(h)T X(h)}2], (2)

and aim at studying designs that keep Ew small for every w, especially for smaller values

of w which are more relevant under effect sparsity.

Lemma 1, presented below and proved in the appendix, gives an expression for Ew

which is useful both algebraically and numerically. Some more notation will help. For any

distinct α, β, γ (1 ≤ α, β, γ ≤ m), let n
(α,β,γ)
jkl be the number of times the factors Fα, Fβ

and Fγ appear at levels j, k and l respectively among the N treatment combinations in the

design, and define

φ(jkl) = sαsβsγ

∑ ∑ ∑ (
n

(α,β,γ)
jkl

)2
, (3)

where the triple sum is over 0 ≤ j ≤ sα − 1, 0 ≤ k ≤ sβ − 1, 0 ≤ l ≤ sγ − 1. Similarly,

for any distinct α, β, γ, δ (1 ≤ α, β, γ, δ ≤ m), define the quantities n
(α,β,γ,δ)
ijkl , and hence

φ(ijkl), exactly along the lines of (3). Let ∆(3) be the set of all ordered triplets jkl,

where 1 ≤ j < k < l ≤ m, and ∆(4) be the set of all ordered four-tuples jklu, where

1 ≤ j < k < l < u ≤ m. Finally, in (2.4) below and the rest of this paper, a “constant”

may depend on w, N, m, s1, . . . , sm but is the same for all designs.

Lemma 1 For 1 ≤ w ≤ W , with

E∗
w =

∑

jkl∈∆(3)

(
6 +

2(w − 1)
W − 1

(sj + sk + sl − 3m + 3)
)

φ(jkl)

+
6(w − 1)
W − 1

∑

jklu∈∆(4)

φ(jklu), (4)

Ew = constant + (w/W )E∗
w, 1 ≤ w ≤ W. (5)

3



In view of (5), hereafter we consider the quantities E∗
w. By (4), for 3 ≤ w ≤ W ,

E∗
w = E∗

1 + (w − 1)(E∗
2 −E∗

1), (6)

a fact which is useful for computational purposes. Lemma 1 also helps in expressing E∗
w,

and hence Ew, in terms of measures of the departure of the design from being represented

by an OA of strength three or four. To that effect, some more notation is introduced.

For 1 ≤ j ≤ m, let

Vj(0) = s−1
j 1j1T

j , Vj(1) = Ij − s−1
j 1j1T

j , (7)

where 1j is the sj × 1 vector with all elements unity and Ij is the identity matrix of order

sj . For any binary m-tuple x = x1 . . . xm, define the matrix

V (x) = V1(x1)⊗ V2(x2)⊗ . . .⊗ Vm(xm), (8)

where ⊗ denotes the Kronecker product. Let ν =
∏m

j=1 sj , and n be the ν × 1 vector whose

elements represent the replication numbers of the ν treatment combinations in the design,

arranged in the lexicographic order. Note that

∑

x∈Ω

V (x) = Is1 ⊗ Is2 ⊗ . . .⊗ Ism

where Ω is the set of all binary m-tuples. Hence

nT n = nT
( ∑

x∈Ω

V (x)
)

n =
∑

x∈Ω

nT
(

V (x)
)

n,

which gives an ANOVA decomposition of n, pretending that n is an observational vector

rather than frequencies of level combinations in a design. Let

Ω(g) =
{
x : x ∈ Ω, x has exactly g coordinates that equal to 1

}
,

then Ω = Ω(0) ∪ Ω(1) ∪ . . . ∪ Ω(m), and

nT n =
m∑

u=0

∑

x∈Ω(g)

nT V (x)n =
m∑

u=0

Bg,

where, for 1 ≤ g ≤ m,

Bg =
∑

x∈Ω(g)

nT V (x)n. (9)

4



Clearly, Bg ≥ 0 for every g, as the matrices V (x) are nonnegative definite. Since the

treatment combinations in the design form an OA of strength two, by (7) − (9), B1 = B2 =

0. Similarly, it can be seen that the design is represented by an OA of strength three if and

only if B3 = 0, and an OA of strength four if and only if, in addition, B4 = 0. Hence, as

argued by Fang, Ma and Mukerjee (2002) (see also Tang (2001)), B3 is a natural measure

of the departure of the design from being represented by an OA of strength three, whereas

B4 measures the additional departure of the design from an OA of strength four. It can

also be seen that

Bg = ν−1N2Ag, 1 ≤ g ≤ m, (10)

where (A1, . . . , Am) is the generalized wordlength pattern (GWP) of the design (Tang and

Deng (1999); Xu and Wu (2001)). Theorem 1 below expresses E∗
w in terms of B3, B4 and

the related quantities B(jkl), where for jkl ∈ ∆(3), B(jkl) = nT V (x(jkl))n, with x(jkl)

being the binary m-tuple that has 1 in the jth, kth and lth positions and 0 elsewhere.

Again, B(jkl) is nonnegative and equals zero if and only if the projection of the design onto

the three factors Fj , Fk and Fl is an OA of strength three. The proof of Theorem 1 appears

in the appendix.

Theorem 1 For 1 ≤ w ≤ W ,

E∗
w = constant

+6ν


B3 +

w − 1
W − 1


B4 − 2B3 +

1
3

∑

jkl∈∆(3)

(sj + sk + sl)B(jkl)





 .

(11)

Remark 1. By (9),

B3 =
∑

jkl∈∆(3)

B(jkl). (12)

Hence if s1 = . . . = sm(= s, say) then (2.10) simplifies to

E∗
w = constant + 6ν

[(
1 +

w − 1
W − 1

(s− 2)
)

B3 +
w − 1
W − 1

B4

]
. (13)

5



The coefficient of B3 in (13) is much larger than that of B4, especially for relatively smaller

values of w. Hence a design that sequentially minimizes B3, B4, . . . (recall that B1 =

B2 = 0 for any design considered) should perform well under the criterion considered

here. Therefore, strengthening the findings of CDT, from (9) it follows that for general

symmetrical factorials a GMA design should have an edge over others under the present

criterion as well.

Remark 2. For two-level factorials, by (9) and (13),

E∗
w = constant + 6N2[A3 + {(w − 1)/(W − 1)}A4],

which, in conjunction with (5), is in agreement with CDT.

Remark 3. For asymmetrical factorials, by (9) and (11),

E∗
1 = constant + 6N2A3.

While the link between E∗
w, w ≥ 2, and the GWP is less obvious, the numerical study in the

next Section suggests that the GMA criterion tends to be in agreement with the present

one.

Remark 4. Interestingly, B(jkl) actually occurs in (11) only for w ≥ 2 and not for w = 1.

If two or more 2fi’s are included in the model, then any two of them can potentially involve

a common factor. Such common factors contribute to the term involving B(jkl) in (11).

The same happens with the coefficient of φ(jkl) in (4). Equation (A.21) in the appendix

and the discussion preceding it make this explicit.

1.3 A numerical study

Table 7C.2 of Wu and Hamada (2000) shows an OA(18,2137) of strength two, with 18

rows and 8 columns, where the first column has two symbols and the remaining columns

have three symbols each. Consideration of the first column together with any three other

columns of this array yields a nonregular fraction of a 2 × 33 factorial in 18 treatment

combinations. Any such design, given by the first, jth, kth and lth columns, is denoted by

1jkl (2 ≤ j < k < l ≤ 8). For any of the 35 possible designs so obtained, a simple counting

of degrees of freedom reveals that X(h)T X(h) is singular whenever the model involves five
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or more 2fi’s. Hence, we consider E∗
w only for 1 ≤ w ≤ 4. It is seen that the collection

of these 35 designs can be partitioned into six classes, as shown in Table 1, such that all

designs in the same class have the same E∗
w for every w and also the same GWP. Table

2 shows E∗
w, 1 ≤ w ≤ 4, and the GWP against these six classes. Equations (4) and (5)

facilitate these computations. From Table 2 , it is clear that, for every w, the ranking of

designs according to E∗
w is precisely the same as that according to the GMA criterion. In

fact, it can be seen that this ranking is also the same as that under the MMA criterion,

with natural weights, as based on the first five moments.

The phenomenon of identical ranking of designs according to the E∗
w and the criteria of

GMA and MMA continues to hold if one instead considers designs for a 2×34 factorial that

arise in a similar manner from the OA(18,2137) mentioned above. The details are omitted

here. This suggests that even for asymmetrical factorials the latter two criteria are good

surrogates for the present criterion which has a direct statistical meaning.

Table 1: Equivalent classes of designs for a 2× 33 factorial arising from an OA(18,2137)

Class Designs
1 1248, 1258, 1367, 1458
2 1236, 1237, 1267
3 1234, 1235, 1246, 1247, 1256, 1257
4 1238, 1268, 1278
5 1345, 1346, 1347, 1348, 1356, 1357, 1358, 1368, 1378,

1456, 1457, 1467, 1468, 1478, 1567, 1568, 1578, 1678
6 1245
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CHAPTER II

BAYESIAN FACTOR SCREENING AND RESPONSE

SURFACE DESIGNS

2.1 Introduction

The statistical design and analysis of experiments is an important tool in the investigation of

processes. By varying factors of interest over level settings and performing experiment trials,

insight into which models best explain the observed responses is gained. The related choices

of the best experiment design and analysis approach are among the most fundamental issues

facing an experimenter.

An important application of the design and analysis of experiments is response surface

methodology (Wu and Hamada (2000)) (hereafter denoted RSM), which typically aims to

“optimize” a process using a fitted model. RSM can be broadly described as consisting

of two-stages: (i) screening; and (ii) response surface exploration. In the first stage, a

relatively small first-order design (e.g., a design aimed at fitting a model with only linear

terms - a first-order model) such as a 2n−k fractional factorial design or a 2-level orthogonal

array is performed. Using the responses from the first stage design, the important factors

are identified and unimportant factors are screened out. Next, a second-order design (e.g.,

a central composite design) is performed using only the important factors. The responses

from the second-order design are used to fit a linear model with linear and quadratic main

effects and linear-by-linear interactions (i.e., a second-order model).

Recently, Cheng and Wu (2001) (hereafter denoted CW) proposed an approach for RSM

that aimed to do both screening and response surface exploration with a single design,

thereby saving experimentation time and run size. The approach is based on a two-stage

analysis that employs screening, projection and response surface exploration. The analysis

procedure can be summarized in the following steps: (i) perform factor screening by fitting a
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linear model containing only linear main effects (a first-order model); and (ii) using the same

data, fit a second-order model based on only the significant factors from step (i). In essence,

the first stage screens out unimportant effects, then recycles the data to fit a second-order

model on a projected design space. While simplifying analysis, this methodology implies

some unstated, but important assumptions with respect to the underlying structure of the

model. For instance, interactions are entertained only on the projected design space, thus

one is assuming that all factors in significant interaction effects also have significant main

effects. The assumption that a two-factor interaction can only be active if both main effects

are active is called strong heredity (Chipman (1996)). In the event that strong heredity does

not hold, the two-stage analysis can miss interactions, and may misspecify the response

surface. Indeed, we demonstrate in the next section that this can lead to detection of

spurious effects.

In this chapter, we propose a new design and analysis approach to overcome some of the

limitations of the two-stage analysis approach. For analysis, we adapt the Bayesian variable

selection approach of Chipman, Hamada and Wu (1997) to the screening/RSM situation.

This approach will result in a more comprehensive search of the model space explaining the

data. In addition we use a Bayesian design criterion (Binghan and Chipman (2002)), based

on the priors for the analysis approach. This creates an integrated design and analysis

framework.

The chapter is outlined as follows. In Section 2, we give a motivating example to

illustrate the necessity of Bayesian framework. In the next two sections, the analysis and

identification of optimal designs are discussed. Section 3 is devoted to the development of

Bayesian framework and Section 4 contains the discussion on optimal designs based on the

Hellinger distance (HD) criterion. Simulation studies are presented in Section 5. Summary

and concluding remarks are given in Section 6.

2.2 Notation and Motivating Examples

In this section we explain why CW analysis have some limitations. Next, several examples

are presented to illustrate some of challenges faced by the two-step analysis approach. In
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the next section, we propose new methodology to address these difficulties.

We now investigate some of the implications of two-stage approach for factor screening

and response surface exploration. Suppose that there are q factors in the experiment, and

the true model relating the response to the design factors is

y = X1θ1 + X2θ2 + X3θ3 + ε (14)

where θ1, θ2 and θ3 are the vectors of coefficients for the main effects, quadratic effects

and linear-by linear interactions, respectively, X1, X2 and X3 are the corresponding model

matrices, and ε ∼ N(0, σ2). CW follow the usual effect sparsity assumption that most

effects are not active, and thus most of the coefficients are negligible. The first step of the

two-stage procedure is to fit a first-order model (main effects only) and estimate θ1 with

the usual least-squares estimate of,

θ̂1 = (X ′
1X1)−1X ′

1y. (15)

Being cognizant that quadratic and interaction terms are potentially important, the estimate

of θ1 has a bias of

B1 = −(X ′
1X1)−1X ′

1(X2θ2 + X3θ3). (16)

The amount of this bias will depend on the values of θ2 and θ3 as well as on X1, X2 and

X3 (i.e., the design).

The second stage of the procedure projects the original q factors onto a smaller factor

space, consisting of only the q′ factors identified as active in the first step. A second-order

model is then fit to these q′ factors only, using the same experiment data. The model

matrices in (14) can be partitioned into those columns that do and do not correspond to

terms in the second-order model that fit to the q′ factors from the first step. That is, let

X1 = (X(1)
1 : X

(2)
1 ), X2 = (X(1)

2 : X
(2)
2 ), and X3 = (X(1)

3 : X
(2)
3 ), where X

(1)
i are the

model matrices for the second-order model based on the q′ active factors and X
(2)
i are the

remaining columns from the corresponding model matrices. Thus, the second step of the

two-stage procedure is to fit the second-order model

y = X
(1)
1 θ

(1)
1 + X

(1)
2 θ

(1)
2 + X

(1)
3 θ

(1)
3 + ε (17)

12



which leads to the estimate of

θ̂
(1)
1 =

(
X(1)′X(1)

)−1

X(1)′y (18)

where X(1) =
(

X
(1)
1 : X

(1)
2 : X

(1)
3

)
. In this case, the bias associated with the second stage

regression estimates are

B2 = −
(

X(1)′X(1)
)−1

X(1)′X(2)θ(2). (19)

as the true model is y = X(1)θ(1) + X(2)θ(2) + ε. The amount of this bias will depend on

values of θ(2) as well as X(1) and X(2) .

Based on equations (16), (19) and the two-stage procedure itself, we make the following

observations:

(i) Interactions containing one or more factors without a significant parent cannot be

identified. Only significant main effects survive stage 1, and terms surviving stage 1

are used to build effects in stage 2.

(ii) Quadratic and interaction effects can bias estimates in the first step, since X2 and X3

appear in the first-stage bias (3).

(iii) Interactions containing one or more factors without a significant parent can bias es-

timates in both steps. Bias arising in step 1 was already mentioned in (ii) above.

Bias can occur in step 2 because such interactions will be contained in X(2) and thus

appear in the second-stage bias (6).

The above arguments are slightly simplified, since they assume that the partition of data

into X(1) and X(2) is a fixed choice. The two-stage nature of the CW algorithm implies that

this partition is random. Thus the second-stage bias will actually involve an expectation

over the choice of X(1) and X(2), instead of being conditional on this choice, as in (6).

However, limitations (i) - (iii) still apply, since they can occur conditional on some stage 1

choices.

The reason for two stages in the CW strategy is to avoid simultaneously considering all

possible subsets of effects. All subsets is computationally more intensive, and the scarcity
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of runs implies that not all effects are simultaneously estimable. However, as pointed out

above, this assumption comes with a cost: the possibility that exclusion of terms in the first

stage can lead to exclusion of important terms at the second stage.

Of course, the severity of the bias in observations (ii) and (iii) will depend on the design

and the magnitude of the unidentified effects. Indeed, one might conjecture that a design

based on an orthogonal array might ease these concerns. Unfortunately, this is not always

the case. In the remainder of this section, we present a few examples to demonstrate how

the two-stage procedure can lead to a mis-specified model in some very simple cases.

Example 1

Consider the example in presented in CW, and first presented by Taguchi (1987). The

experiment is a 27-run experiment (Taguchi (1987, p.423)) to study the PVC insulation

for electric wire. There are 8 factors (A −H), each with 3 levels, and the design is given

in Table 3. The aim of the endeavor is to identify the quadratic model that best explains

the data in light of standard assumtions such as effect sparsity, effect hierarch and effect

heredity. We will delay the analysis of Taguchi’s data and proeceed with simulated data for

illustrative purposes.

In what follows (and throughout this chapter), we follow CW and use the linear-quadratic

system for coding linear and quadratic effects (Wu and Hamada (2000)) in order to reduce

correlation among a factor’s linear and quadratic components. The linear-quadratic coding

is expressed as follows :

factor

0

1

2

−→

linear quadratic

−1 1

0 −2

1 1.

Although the true model is unknown, we can use the design in Table 3 to illustrate some

difficulties with the two-stage approach. Suppose the true model for the response is

y1 = θAxA + θBxB + θBExBE + ε,
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Table 3: Design matrix and response data

y = PVC insulation data, y1 = model 1, y2 = model 2

run A B C D E F G H J y y1 y2
1 0 0 0 0 0 0 0 0 0 5 -17 -13
2 0 0 0 0 1 1 1 1 1 2 -22 -10
3 0 0 0 0 2 2 2 2 2 8 -30 9
4 0 1 1 1 0 0 0 2 2 -15 -9 4
5 0 1 1 1 1 1 1 0 0 -6 -9 -11
6 0 1 1 1 2 2 2 1 1 -10 -10 0
7 0 2 2 2 0 0 0 1 1 -28 -4 12
8 0 2 2 2 1 1 1 2 2 -19 2 20
9 0 2 2 2 2 2 2 0 0 -23 7 -10

10 1 0 1 2 0 1 2 0 1 -13 -9 -10
11 1 0 1 2 1 2 0 1 2 -17 -13 3
12 1 0 1 2 2 0 1 2 0 -7 -19 -31
13 1 1 2 0 0 1 2 2 0 -23 -1 -1
14 1 1 2 0 1 2 0 0 1 -31 1 1
15 1 1 2 0 2 0 1 1 2 -23 2 18
16 1 2 0 1 0 1 2 1 2 -34 7 13
17 1 2 0 1 1 2 0 2 0 -37 11 -1
18 1 2 0 1 2 0 1 0 1 -29 19 9
19 2 0 2 1 0 2 1 0 2 -27 7 -4
20 2 0 2 1 1 0 2 1 0 -27 -3 -21
21 2 0 2 1 2 1 0 2 1 -30 -9 -10
22 2 1 0 2 0 2 1 2 1 -35 11 0
23 2 1 0 2 1 0 2 0 2 -35 11 14
24 2 1 0 2 2 1 0 1 0 -38 10 -20
25 2 2 1 0 0 2 1 1 0 -39 16 6
26 2 2 1 0 1 0 2 2 1 -40 20 12
27 2 2 1 0 2 1 0 0 2 -41 29 30

with (θA, θB, θBE) = (10, 12, 6) (all other coefficients in the linear model are zero) and

ε ∼ N(0, 1) error. Table 3 contains data simulated from this model under column y1.

Table 4 shows the ANOVA table for the fit of the first-order model. Notice that not

only are factors A and B identified as significant, so is factor H. Next, a second-order

response surface is fit to the three active factors (A, B and H) (see Table 5), and no

additional significant effects are identified. So, in this fairly simple case, the presence of

a weak heredity interaction results in a spurious main effect being found and failure to

identify the interaction.
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Table 4: Least square estimates, t-statistics and p-values

Coefficients Estimate Std. Error t value Pr(> |t|)
Intercept 1.85 1.57 1.18 0.2540

A 9.33 1.92 4.86 0.0001
B 9.44 1.92 4.92 0.0001
C -0.78 1.92 -0.41 0.6906
D -2.00 1.92 -1.04 0.3124
E -1.00 1.92 -0.52 0.6094
F -1.89 1.92 -0.98 0.3393
G -3.28 1.92 -1.71 0.1062
H -4.39 1.92 -2.29 0.0355
J -1.28 1.92 -0.67 0.5149

Table 5: Least square estimates, t-statistics and p-values

Coefficients Estimate Std. Error t value Pr(> |t|)
Intercept 1.85 1.46 1.27 0.2220

A 9.33 1.79 5.21 0.0001
B 9.44 1.79 5.28 0.0001
H -4.39 1.79 -2.45 0.0253
A2 1.04 1.03 1.00 0.3295
B2 0.59 1.03 0.57 0.5737
C2 1.87 1.03 1.81 0.0879

AB 1.00 2.19 0.46 0.6539
AH 3.75 2.19 1.71 0.1052
BH 2.75 2.19 1.26 0.2265

Example 2

Let us see another example. The data are given in Table 3 under column y2. The true

model is

y2 = θBxB + θDxD + θBJxBJ + ε.

The first-order fit identifies factors B, D and J as significant and in the second-order fit,

along with those factors, D2 and DJ come out to be significant. As we see, the weak

heredity interaction BJ gives spurious main effect J , quadratic effect D2 and interaction

DJ .
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2.3 Design and Model Selection

Now that we have seen the existing approach can lead to incorrect identification of the

model, we need to find a method to eliminate this problem. The Bayesian approach of

Bingham and Chipman (2002) for design and analysis of screening experiments is taken

here, with adaptations to the three-level response surface problem. Analysis is described

first, since the design criterion is based on priors used for modelling.

2.3.1 Analysis

The model selection problem amounts to identifying a subset of predictors as active, and

in this setting there are typically more parameters to estimate than unique treatments.

The possible models will be labeled as M1,M2, . . . , MK . Priors for Mi and (βi, σ) will be

discussed later.

Here we propose stochastic variable selection, based on Gibbs sampler. We start with a

given design and the corresponding responses. For the linear regression with normal errors,

y = Xθ + σε, ε ∼ N(0, 1) (20)

where θ contains linear and quadratic main effects and linear-by-linear interaction effects.

The Bayesian framework of Chipman, Hamada, and Wu (1997) approaches model selection

as follows: Importance of effects is captured via an unobserved vector δ of zeros and ones

where δi = I{θi 6= 0}. A normal mixture prior is used for the coefficients β :

f(βi|δi) =





N(0, τ2
i ) if δi = 0

N(0, (ciτi)2) if δi = 1
(21)

When δi = 0, βi has a high mass around zero and thereby, is not likely to have a large

effect. On the other hand, when δi = 1 a large value of ci ensures that the variable is likely

to have a large influence.

Not all models are are equally likely. Based on the assumptions of effect sparsity, effect

hierarchy and effect inheritance, we can distinguish between the “likely” and “unlikely”

models. Note that the commonly used independence prior, which implies that the impor-

tance of one factor is independent of that of another, is not very attractive as there are
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quadratic main and linear-by-liner interaction effects. Instead, we have used hierarchical

priors, motivated by Chipman (1996). Consider a simple example with three main effects, A,

B and C, each having three levels. It is logical to think that the importance of the interaction

effect AB will depend on the importance of main factors A and B only. Also, the quadratic

effect of level A will less likely to be important if the linear effect of A is not important.

This belief can be expressed in the prior for δ = (δA, δB, δC , δA2 , δB2 , δC2 , δAB, δAC , δBC) as

follows:

P (δ) = P (δA, δB, δC , δA2 , δB2 , δC2 , δAB, δAC , δBC)

= P (δA, δB, δC)P (δA2 , δB2 , δC2 |δA, δB, δC)P (δAB, δAC , δBC |δA, δB, δC)

= P (δA)P (δB)P (δC)P (δA2 |δA, δB, δC)P (δB2 |δA, δB, δC)P (δC2 |δA, δB, δC)

P (δAB|δA, δB, δC)P (δAC |δA, δB, δC)P (δBC |δA, δB, δC)

= P (δA)P (δB)P (δC)P (δA2 |δA)P (δB2 |δB)P (δC2 |δC)

P (δAB|δA, δB)P (δAC |δA, δC)P (δBC |δB, δC)

The first equality comes from the conditional independence principle which assumes that

the higher order terms are independent when conditioned on the first-order terms. Also it

is assumed that first-order terms are independent. The inheritance principle assumes that

the importance of a higher order term depends only on its lower order parents. The nature

of the exact dependence, which is followed in all our analysis, is given next.

P (δA = 1) = p (22)

P (δA2 = 1|δA) =





0.1p if δA = 0

p if δA = 1.
(23)
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P (δAB = 1|δA, δB) =





0.1p if δA + δB = 0

0.5p if δA + δB = 1

p if δA + δB = 2.

(24)

In our analysis, we choose p = 0.25. We delay the discussion of the choice of p until the

sequel.

A prior must also be specified for σ. Following George and McCulloch (1993), we take

σ2 ∼ IG(ν/2, νλ/2)

where IG denotes the inverted gamma distribution. It can be shown that, νλ/σ2 ∼ χ2
ν .

Following George and McCulloch (1993), we took

τj =
∆y

3∆Xj

where ∆y represents a “small” change in y, and ∆Xj represents a large change in Xj . In

our examples, ∆Xj = max(Xj) −min(Xj) and ∆y =
√

Var(y)/5 is used. For priors of σ,

ν = 5 and λ = Var(y)/25 is used.

A more general case of (23)−(24) is considered in the appendix, along with calculations

that show that the expected number of main effects under (23)−(24) is

E(# effects) = pq + pq(q − 1)
{
.05 + .4p + .05p2

}
+ pq {.9p + .1} . (25)

Here q is the number of factors considered in the experiment. The first term in (25) is the

expected number of main effects, second and third terms give that of 2fi’s and quadratic

effects, respectively.

The choice of p is now made so that expected number of active effects under the prior

matches that of the experimenter’s prior belief. For a specified number of effects expected

to be active, (25) can easily be solved for p. This is a particularly attractive feature of the

methodology since it explicitly builds in the experimenter’s prior belief about the size of

the model. In most situations, it is easier for an experimenter to express belief about the

number of anticipated effects rather than a probability associated with an effect.
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2.3.2 An illustration of analysis

We begin with a brief description of the Bayesian framework. Let y denote the data, f(y|θ),
their likelihood given the vector of parameters θ, and π(θ) the prior distribution for θ. Then

the posterior distribution for θ is

π(θ|y) =
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

(26)

Using the posterior distribution, inference about θ can then be made.

The evaluation of the posterior for the vector θ in (26) for variable selection can be

conveniently implemented by using Gibbs sampling (Geman and Geman (1984)). Gibbs

sampling is a simple Markov Chain Monte Carlo (MCMC) technique for drawing samples

from a posterior distribution. In general, an MCMC constructs a Markov chain θ1, θ2, . . .

whose limiting distribution is the posterior (Smith and Roberts (1993)). In Gibbs sampling,

full conditional distributions are employed, namely f(θi|θ(−i), y), where

θ(−i) = (θ1, . . . , θi−1, θi+1, . . . , θ2p+3).

Starting with an arbitrarily chosen value θ0, θ1 is obtained by the following sequence of

random draws:

θ1
1 ∼ f(θ1|θ0

(−1), y),

θ1
2 ∼ f(θ2|θ1

1, θ
0
3, . . . , θ

0
2p+3, y),

θ1
3 ∼ f(θ3|θ1

1, θ
1
2, θ

0
4, . . . , θ

0
2p+3, y), (27)

...

θ1
2p+3 ∼ f(θ2p+3|θ1

1, θ
1
2, . . . , θ

1
2p+2, y).

In practice, the Markov chain is run “long enough” until it converges. Cowles and Carlin

(1996) provided an overview of convergence and mixing diagnostics for MCMC.

Although the description of Gibbs sampling indicated the use of full conditionals of each

of the 2p + 3 parameters, parameters can be grouped if the full conditionals have a simple

form. This occurs for the variable selection problem as formulated above, namely, the joint
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distribution for f(θ, y) can be expressed as

f(θ, y) = f(y|β, σ2, δ)π(β, σ2, δ)

= f(y|β, σ2, δ)π(β|σ2, δ)π(σ2|δ)π(δ)

= f(y|β, σ2)π(β|σ2, δ)π(σ2)π(δ). (28)

The third line of (28) follows from its second line by assuming that the distribution of y

depends only on β and σ2 and that the prior for σ2 does not depend on δ. From (28), the

full conditionals can be derived. For example,

f(β|δ, σ2, y) ∝ f(y|β, σ2)π(β|σ2, δ), (29)

which simplifies to a multivariate normal density. The other full conditionals can be de-

termined similarly so that the Gibbs sampling algorithm can be shown to consist of a

multivariate normal draw for (β|σ2, δ), an inverse gamma draw for (σ2|β, δ), and p + 1

Bernoulli draws for (δi|β, σ2, {δj}j 6=i).

It can be shown that,

f(β|σ2, δ, y) ∼ MN(σ−2AδX
T y, Aδ),

f(σ2|β, δ, y) ∼ IG(a, b),

f(δ|β, σ2, y) ∝ π(β|σ2, δ)π(δ)

where Aδ = σ2(XT X +D−1
δ )−1 and Dδ is a diagonal matrix diag{(cδ1

1 τ1)2, . . . , c
δp+1

p+1 τ2
p+1)},

a = 1
2(N + p + 1 + ν) and b = 1

2 [νλ + (y −Xβ)T (y −Xβ) + βT D−1
δ β].

After a burn-in of 1000 runs, the results of 10000 iterations of the Gibbs sampler are

considered and the proportion of times a factor is identified as significant is taken to be

the posterior probability of δi’s. Finally, a factor is declared significant if its posterior

probability is estimated to be more than a specified number c (say, 90%).

Let us come back to our motivating examples. For both of the models (response y1 and

y2), this analysis was applied and found that this method captures the “true” model of

nature. For the first example, Pr(δi = 1) = 1.0 for δi corresponding to A, B, and BE, while

it is less than 0.09 for other effects. For the second example, similar results are obtained.
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2.3.3 The design criterion

The analysis setting that motivates our methodology was introduced in the last Section.

From an anaysis standpoint, the aim is to identify a subset of predictors that best explain

the data. From a design perspective, the goal is to identify the set treatments that best

facilitates the aim of the analysis. Thus we aim to identify the “optimal” design with q

three-level factors in n trials for estimating the parameters of the linear model in (20).

Common choices of experiment plans are the regular fraction factorial designs that are

most often ranked by the minimum aberration criterion (Fries and Hunter (1980)), which

sequentially minimizes the elements of the word-length pattern. There are two underlying

assumptions which motivate the use of the minimum aberration criterion:

A1. Effect Sparsity: The number of important effects is relatively small.

A2. Effect Hierarchy: Lower order effects are more likely to be important than higher order

effect and effects of the same order are equally important.

In order to explore the complex aliasing structure between main effects and two-factor

interactions, non-regular fractional factorials such as Plackett-Burman (1946) designs are

also used frequently. Consider the most “notorious” case, the 12 run Plackett-Burmann

design with 11 factors. For each factor X, its main effect is partially aliased with the 45 two-

factor interactions not involving X, thereby making it difficult to disentangle or interpret

the significance of interactions. Draper (1985) commented that unless (i) the interactions

are small or negligible or (ii) there is relatively few “important” factors, the results from

Plackett-Burmann designs may be confusing. In Taguchi and Wu (1979, p. 35), it is stated

that “... no interactions are calculated even if they exist ... these interactions are treated as

errors, so it is advantageous to have the effects of these interactions uniformly distributed in

all (design matrix) columns.” But this is not true that estimated main effects are not affected

by interactions. In particular, as noted by Hamada and Wu (1992), ignoring interactions

can lead to (i) important effects being missed, (ii) spurious effects being detected, and (iii)

estimated effects having reversed signs resulting incorrectly recommended factor levels. We

will come back to this issue in subsequent examples.
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Recently, methods have been proposed for analyzing complex aliasing designs that en-

tertain models with both main effects and two-factor interactions (Hamada and Wu, 1992;

Chipman, Hamada and Wu, 1997). Hamada and Wu (1992) proposed an iterative guided

stepwise regression strategy for analyzing the data from such designs that allows entertain-

ment of interactions. While providing a feasible alternative to an all-subset regression, their

strategy explore a small part of the entire model space. More comprehensive searches are

provided by Chipman, Hamada and Wu (1997). They took a Bayesian Approach which

combines the Stochastic Variable Search Selection (SSVS) algorithm of George and McCul-

loch (1993) with priors for related predictors given by Chipman (1996). A suitable class of

hierarchical prior distributions focuses the search on a reasonable class of models. These

iterative approaches rely on an additional assumption to help sort through the complex

aliasing structure:

A3. Effect Inheritance: An interaction is more likely to be important if one or more of its

parent factors are also important.

In light of this additional assumption, Hamada and Wu (1992) viewed the complex

aliasing of non-regular fractional factorials as an advantage because non-regular fractional

factorials give the opportunity to identify promising interactions as well as main effects. The

belief that estimation of some models is more important than others is not easy to incor-

porate into criteria such as minimum aberration and estimation capacity in some practical

applications but the Bayesian approach is ideal for these kind of situations.

The measurement of the ability to discriminate among models is accomplished via

a Bayesian approach, which has similarities to the model discrimination criterion (MD)

(Meyer, Steinberg and Box (1996)) which is based on the Kullback-Leibler information.

Bingham and Chipman (2002) propose a different criterion, based on the Hellinger distance

between predictive densities, to help distinguish between competing models. The Hellinger

distance is preferable to the Kullback-Leibler information in this setting because it requires

half the computational expense and is bounded. Also, the Hellinger distance has appealing

properties that allows experimenters to use it as a basis for choosing an appropriate run
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size.

Bingham and Chipman (2002) considered only two level factors. Their idea can be

generalized to three level factors where linear and quadratic effect of the main factors and

linear-by-linear interactions can be considered. This has similarities to the factor screening

and response surface exploration of Cheng and Wu (2001). Standard practice in response

surface methodology performs factor screening and response surface exploration sequen-

tially, using different designs. In this chapter, we show how Baysian approach can overcome

this limitation. We find the optimal design based on Cheng and Wu’s (2001) approach and

also analyse that with our Baysian approach. We see that the optimal design need not be

same as that of ours and following our approach, we get the same result when the actual

model follows strong heridity, but unlike their approach, it successfully identifies the models

with weak heredity.

The HD criterion is based on the pairwise Hellinger distance between predictive densi-

ties, and is written as:

HD =
∑

i<j

P (Mi)P (Mj)H(fi, fj), (30)

where P (Mi), and P (Mj) are the prior probabilities for models Mi and Mj , fi, and fj

are the predicitve densities for response vector y under models Mi and Mj , respectively.

H(fi, fj) is the Hellinger distance between the two models

H(fi, fj) =
∫

(f1/2
i − f

1/2
j )2dY = 2− 2

∫
(fi fj)1/2dY. (31)

The design enters this criterion through fi and fj , since the predictive densities are evaluated

at the values of the factors specified in the design. The motivation for (31) is that it is easiest

to discriminate between models if they make different predictions. It therefore makes sense

to consider designs that maximimize (31). The weighting of the Hellinger distances in (30)

serves to put priority on distinguishing the most probable models.

2.3.4 Priors for Design

The HD criterion (30) uses predictive densities, which implies a Bayesian formulation of

the problem. Section 3.1 outlines the priors used in analysis, both for models (the Mi) and
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for parameters conditional on a model (βi, σ). Similar priors are used in the design criterion

(31), (30), with slight modifications to the prior on β.

The slight difference is the prior on βi|δi. In (21), a mixture of two normals is used. For

purposes of identifying the design, we use a related prior, in which inactive effects have a

prior that is degenerate at βi = 0. The prior on active terms remains the same.

The coefficient vector βi and the associated matrix of regressors Xi are indexed by i.

Let ri be the number of columns in Xi (i.e., the number of effects in model Mi plus one one

additional column for the intercept). Thus π(βi|σ2) ∼ MV N(0, σ2Γi), where

Γi = γ2




c 0

0 Iri−1


 . (32)

We choose c = 1, 000, 000 so that the prior on the intercept is has mean 0 and large variance.

In all calculations presented we take γ = 2. MSB suggest this is a reasonably uninformative

value in the context of starting designs. More careful choice of γ is required for follow-up

designs, which are not considered in this article.

This prior formulation means the Hellinger distance (31) can be written as

H(fi, fj) = 2− 2
∣∣∣1
2

(
Σ−1/2

i Σ1/2
j + Σ1/2

i Σ−1/2
j

)∣∣∣
1/2

(33)

where

Σi = (In + X ′
iΓiXi). (34)

Some intuition about the distance measure can be gained by considering the situation when

there are only two competing models and only one trial to be conducted. In this instance,

the Hellinger distance will be greatest for a design where there is little uncertainty about

one model and large uncertainty about the other. The criterion amounts to choosing trials

where the average relative uncertainty between models is largest.

2.4 Searching for optimal designs

The basic strategy of Bingham and Chipman will be employed. We review this strategy, and

describe modifications to deal with the increased computational complexity of three-level

designs.
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The search for promising designs involves two challenges:

• Evaluation of the HD criterion.

• An effective search algorithm for HD-optimal designs.

In many cases, to evaluate HD, we cannot calculate (30) for all pairs of models because

the model space is too large. Instead, we attempt to evaluate the largest terms in (30), by

discarding models that have small prior probability P (Mi). By replacing an average over

all pairs of models with an average over the most probable models, the evaluation of HD

becomes tractable. The most probable models are identified by sampling from the prior.

This approach was taken in Bingham and Chipman, and is used here without modification.

Bingham and Chipman utilize an exchange algorithm for design optimization. Opti-

mization is over experimental settings consisting of all possible combinations of three-level

factors. A modified version of this algorithm is as follows:

1. Begin with a random n-run design, with design points sampled with replacement from

the 3q full factorial design.

2. Repeat:

(a) Identify the index k of the run whose removal will least decrease HD.

(b) Sample one run at a time, without replacement, from the set of all possible three-

level runs. This repeats until either all runs have been sampled, or one run leads

to an increase in HD when run k is replaced with the new run.

(c) Replace run k with the new run identified in step 2 (b).

Step 2 will repeat until there is little or no improvement in HD over several iterations.

Bingham and Chipman’s algorithm evaluated all possible runs in step 2b, instead of

stopping as soon as an improvement was observed. The large number of candidate runs

(3q) makes this infeasible for most problems. There is no guarantee that this approach will

converge to the HD-optimal design, therefore multiple random designs are used as start

points to generate a variety of promising designs. Another interesting start point would be

a conventional 3-level design.
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2.5 Examples and a simulation experiment

The performance of Bayesian approach as well as CW approach are studied via simulations

with two initial designs both having 18 runs. The first design is an Orthogonal Array and

the other is the HD-optimal design. There are seven factors under study. The models

are generated from the priors (22), (23) and (24) with p = 0.344 which gives the expected

number of priors to be 5. Here coefficients are set to constant values. Analysis is performed

with CW as well as Bayesian methods and there a factor is declared significant if its posterior

probability is greater than a fixed preassigned constant, c. The results are tabulated for

three different values of c (0.9, 0.75 and 0.5).

Table 6 summarizes the results for 1000 simulations. The columns under CW gives the

average performance of CW method whereas the columns under Bayes give the results of

Bayesian analysis for different c’s. Let us illustrate the meanings of the rows through an

example. Suppose the data are generated from the model A, B, C and AD and the model

identified is A, C and BC. Then the first row (“Missed”) calculates the proportion of missed

effects, which is 2/4 as there are 4 factors in the model among which 2 (B and AD) are

missing in the model identified. The second row (“Captured”) calculates the complement

i.e. proportion of the true model captured by the analysis which is again 2/4. The third

row (“False +ve”) gives the proportion of factors identified by the model but not in the

true model. In this example, this number is 1/4 (the numerator is 1 as there is only one

such effect, namely BC). The last roe (“Correct”) counts the proportion of times the exact

“true” model is identified. The numbers reported in Table 2.5 are the values averaged over

1000 simulations.

It is easy to see that the Bayesian analysis performs better. As expected, with an

increase of cut-off value c, the rate of identification of false effects decreases, but at the

same time the chances of missing an important effect increases as well as the rate at which

the correct model is identified is also decreases. However, under all circumstances, the

Bayesian approach outperforms the CW approach. For the 18-run OA, CW approach

identifies the correct model only 8% of the time whereas the Bayesian approach identifies

it more than 34% of the cases, with probability of wrongly identifying significant effects
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Table 6: Simulation studies (in %) for different designs

Performance OA HD-optimal design
Criteria CW Bayes CW Bayes

c = .9 c = .75 c = .5 c = .9 c = .75 c = .5
Missed 65 36 28 21 52 47 39 28
Captured 35 64 72 79 48 53 61 72
False +ve 4 0.0 0.3 1 1.6 0.1 0.8 4
Correct 8 20 28 34 10 21 27 35

uniformly smaller.

The 18-run HD-optimal design is given in the appendix. It does not perform significantly

better than the 18-run OA. Although Orthogonal Arrays are widely used in practice, they

are not available for every possible run size. For example, if we have resource to have 17

runs of an experiment, there are no fractional factorials or Orthogonal Arrays available.

However, one can get a 17-run HD optimal design and use it for running the experiment.

2.6 Summary and Conclusions

Instead of conducting two experiments in the response surface methodology, CW approach

aims to use only one design to identify the correct model. However, this method can lead

to misleading conclusions. A Bayesian analysis approach is suggested here, which identifies

the correct model using only one experiment, but with much higher accuracy. Orthogonal

arrays are widely used but they are limited in numbers. The HD-optimal design criterion

is introduced here which can be used to obtain optimal designs for any arbitrary run size.
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CHAPTER III

ALIASING RELATIONS OF MIXED FACTORIALS IN

THE FORM OF PRODUCT ARRAYS

3.1 Introduction

Two- and three-level factorial and fractional factorial designs are widely used in indus-

trial experimentations and are discussed in detail in design of experiments textbooks (Box,

Hunter and Hunter (1978); Cochran and Cox (1950)). The literature on symmetric designs

is already voluminous. For example, the theory of regular fractions for symmetric factorials

is given by Dey and Mukerjee (1999). Wu and Hamada (2000) devote a full chapter in

their applied design of experiment textbook, on analysis techniques for mixed-level factorial

plans. Although these are important designs, their aliasing patterns have not been studied

explicitly.

Mixed-levels designs typically occur when there are both qualitative and quantitative

factors in the experiment, and the qualitative factors have more than two levels and the

quantitative factors have two levels. Consider an experiment by Hale-Bennett and Lin

(1997) and reported in Wu and Hamada (2000) that was performed to improve a painting

process of charcoal grill parts. A mixed-level 36-run design (Table 16) was used to study

six factors: three of them (A,B,C) were at two levels and the other three (D, E, F ) were at

three levels. It is a 23−1× 33−1 design which consists of 4× 9 = 36 runs and is a “product”

of a 4-run 23−1 and a 9-run 33−1 design. Now it is not evident that the factorial effect

ABD2E is same as that of ABDE2. If all the factors of a factorial effect are at two-levels,

AB for example, a modulo 2 operation should be performed. Similarly, modulo 3 operations

are used when all of them are have three level, as in the case for DE2. But what about

ABDE2? It is not obvious whether modulo 2 or modulo 3 operations should be done in

calculating the aliasing relationship of a mixed-level factorial effect. In fact, there is no
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simple answer to this question, as will be clear from the discussions of Section 2.

In Section 2, we develop the general theory for sn1
1 × sn2

2 factorial designs and illustrate

it in the context of a 23×33 design. In Section 3, we discuss sn1−k1
1 ×sn2−k2

2 factorial designs

and discuss the paint experiment as an example of 23−1 × 33−1 designs.

3.2 sn1
1 × sn2

2 factorial designs

An experiment involving n1 factors each at s1 levels and n2 factors each at s2 levels is

an sn1
1 × sn2

2 asymmetrical factorial experiment. Suppose the levels of the si-level factor

are coded as si elements of Galois field GF (si) where si is a prime or prime power. With

levels as 0, 1, . . . si − 1, a typical treatment combination, i.e., a combination of the levels of

the n1 + n2 = n factors will be represented by an ordered n-tuple i1 . . . in1j1 . . . jn2 where

ik ∈ {0, 1, . . . , s1−1}, 1 ≤ k ≤ n1 and jk ∈ {0, 1, . . . , s2−1}, 1 ≤ k ≤ n2. Clearly, altogether

there are sn1
1 sn2

2 treatment combinations.

In what follows, (a, b) and (a′, b′)′ will be used interchangeably for the sake of notational

simplicity where a and b are column vectors of dimension n1 and n2, respectively.

A treatment contrast L is said to belong to the pencil (a, b) if it is of the form

L =
s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j(a,b)

τ(x, y)}, (1)

where

Vi,j(a, b) = {(x, y) = (x1, . . . , xn1 , y1, . . . , yn2 , )
′ : a′x = αi, b

′y = βj},

0 ≤ i ≤ s1 − 1, 0 ≤ j ≤ s2 − 1; the effect of a treatment combination represented by (x, y)

will be denoted by τ(x, y) and l(i, j)’s are real numbers, not all zeros, satisfying

s1−1∑

i=0

l(i, j) =
s2−1∑

j=0

l(i, j) = 0. (2)

In other words, a treatment contrast L belongs to (a, b) if for all (x, y) belonging to the

same Vi,j(a, b), the coefficient of τ(x, y) in L is also the same.

In general, consider any two pencils (a, b) and (a∗, b∗). These two pencils are distinct if

a is distinct from a∗ and b is distinct from b∗, in the sense of symmetric factorial designs.
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Recall that, in symmetric fractions, pencils with proportional entries are considered as

identical.

For a sn1
1 ×sn2

2 product array, for the sni
i factorial part, there are (sni

i −1)/(si−1) distinct

pencils which involve only si-level factors. The distinct pencils involving both s1- and s2-

level factors are given by the products of those two sets of pencils involving only s1- or only

s2-level factors. A simple counting of degrees of freedom justifies this formulation. Recall

that the total number of factorial effects involving only si-level factors is (sni
i − 1)/(si− 1),

each with (si− 1) d.f.. As the interactions involve both s1- and s2-level factors are given by

products of the other two sets of pencils, i.e., there are (sn1
1 −1)/(s1−1)× (sn2

2 −1)/(s2−2)

pencils of this kind, each with (s1 − 1)(s2 − 1) d.f.. Thus, the above description accounts

for

sn1
1 − 1
s1 − 1

(s1 − 1) +
sn2
2 − 1
s2 − 1

(s2 − 1) +
sn1
1 − 1
s1 − 1

sn2
2 − 1
s2 − 1

(s1 − 1)(s2 − 1) = sn1
1 sn2

2 − 1

d.f. which agrees with the fact that there are sn1
1 sn2

2 in all.

Following Bose (1947), in the Appendix we give the definition for treatment contrasts

belonging to factorial effects for the general case of an s1× . . .× sn factorials. The next two

results link pencils with factorial effects.

Result 1 (a) Treatment contrasts belonging to distinct pencils are orthogonal to each other.

(b) Let (a, b) be a pencil such that ai 6= 0 if i ∈ {i1, . . . , ig}, and = 0 otherwise, bj 6= 0 if j ∈
{i1, . . . , ih}, and = 0 otherwise, where 1 ≤ i1 < . . . < ig ≤ n1, 1 ≤ j1 < . . . < ih ≤ n2 and

1 ≤ g ≤ n1, 1 ≤ h ≤ n2. Then any treatment contrast belonging to (a, b) also belongs to the

factorial effect Fi1 . . . FigF
′
j1

. . . F ′
jh

.

Example

Let us consider the 23 × 33 full factorial design with two-level factors A, B, C and

three-level factors D, E, F . The levels of A, B, C are denoted by 0 and 1, and those

of D, E, F are denoted by 0, 1 and 2. Then a typical treatment combination, i.e., the

combination of the levels of six factors will be represented by x = (a, b, c, d, e, f), where

a, b, c ∈ {0, 1} and d, e, f ∈ {0, 1, 2}. For example, the factorial effect ABDE2 is denoted

by (a, b, c, d, e, f) ≡ (1, 1, 0, 1, 2, 0). Clearly there are 23 × 33 = 216 possible treatment
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combinations.

The pencils involving only the two-level factors or only the three-level factors can be

described as usual. Thus the pencil AB is given by the contrasts between the two sets

of treatment combinations for which a + b = 0 or 1 mod 2. More explicitly, these two

sets are {x : x = (a, b, c, d, e, f), a + b = 0 mod 2} and {x : x = (a, b, c, d, e, f), a + b =

1 mod 2}. Clearly, there are 108 treatment combinations in each of these sets, e.g., the

first set consists of the treatment combinations (0, 0, c, d, e, f) and (1, 1, c, d, e, f), where

c ∈ {0, 1} and d, e, f ∈ {0, 1, 2}, leading to 54+54=108 treatment combinations in all. In a

similar manner, the pencil DEF 2, involving exclusively the three-level factors, is given by

contrasts among three sets of treatment combinations for which d + e + 2f = 0, 1 or 2 mod

3. As before, there are 8× 9 = 72 treatment combinations in each of these sets. It is clear

that any pencil involving A, B, C will have 1 d.f.while any pencil involving only D, E, F

will have 2 d.f..

Now consider the interactions that involve both two- and three-level factors. Recall that

there are 7 pencils A, B, C, AB, AC, BC and ABC involving only the two-level factors.

Similarly there are 13 distinct pencils D, E, F , DE, DE2, . . ., DE2F 2 involving only the

three-level factors. The pencils representing interactions that involve both two- and three-

level factors are given by the products of these two sets of pencils, i.e., there are 7×13 = 91

pencils of this kind, namely, AD, AE, . . ., ADE2F 2, BD, BE, . . ., BDE2F 2,. . ., ABCD,

ABCE, . . ., ABCDE2F 2. Each of these 91 pencils carries 2 d.f.. Clearly, for example,

AD and AD2 mean the same thing in this formulation (so we write only AD). Similarly

ABDE2 = ABD2E = AB(DE2)2. Taking care of the 7 pencils involving only the two-

level factors and the 13 pencils involving only the three-level factors, the above description

accounts for 7 × 1 + 13 × 2 + 91 × 2 = 215 d.f., which agrees with the fact that there are

23 × 33 = 216 treatment combinations in all.

How does one actually define contrasts belonging to pencils as considered in the last

paragraph ? Consider, for example, the pencil ABDE2. For i = 0, 1 and j = 0, 1, 2, define

Vi,j = Vi,j(110, 120) = {x : x = (a, b, c, d, e, f), a + b = i mod 2, d + 2e = j mod 3}. Note

that a + b = i mod 2 corresponds to AB, and d + 2e = j mod 3 corresponds to DE2.
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Clearly, each of the six sets Vi,j has cardinality 4 × 9 = 36. Let T (i, j) be the total of the

treatment effects for the treatment combinations in Vi,j . Then a typical contrast belonging

to the pencil ABDE2 will be of the form
∑

i

∑
j l(i, j)T (i, j), where the scalars l(i, j), not

all zeros, must satisfy l(0, j)+ l(1, j) = 0 for every j and l(i, 0)+ l(i, 1)+ l(i, 2) = 0 for every

i. Thus there will be two such independent treatment contrasts, namely, L1 = T (0, 0) −
T (1, 0)−T (0, 2)+T (1, 2) and L2 = T (0, 0)−T (1, 0)−2T (0, 1)+2T (1, 1)+T (0, 2)−T (1, 2).

3.3 sn1−k1
1 × sn2−k2

2 fractional factorial designs

A regular fraction of an sn symmetrical factorial, where s (≥ 2) is a prime or prime power, is

specified by any k (1 ≤ k < n) linearly independent pencils, say b(1), . . . , b(k), and consists

of treatment combinations z satisfying Bz = c, where B is a k × n matrix with rows

(b(i))′, 1 ≤ i ≤ k, and c is a fixed k × 1 vector over GF (s). The specific choice of c is

inconsequential. Hence, without loss of generality, it is assumed that c = 0, the k × 1 null

vector over GF (s). Then a regular fractional factorial plan is given by, say,

d(B) = {z : Bz = 0}.

In the same line, for a sn1
1 ×sn2

2 design, a regular fractional factorial plan, sn1−k1
1 ×sn2−k2

2

is given by

d(B) = {z : Bz = 0} = {(x, y) : B1x = 0, B2y = 0}

where

B =




B1 0

0 B2


 .

Note that d(Bi) gives a regular sni−ki
i fractional factorial plan. For a symmetric fractional

factorial, a pencil is called a defining pencil if it belongs to the row space of B. Equivalently,

a defining pencil of a sn1−k1
1 × sn2−k2

2 design is of the form (b1, b2) where bi is a defining

pencil of sni−ki
i .

Consider now any defining pencil (a, b). Then a′ = λ′B1 and b′ = ξ′B2 for suitable λ

and ξ with entries from GF (s1) and GF (s2), respectively. Now it is not difficult to see that
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d(B) ⊂ V0,0(a, b). Recalling the definition of a treatment contrast, the following result is

evident.

Result 2 No treatment contrast belonging to any defining pencil is estimable in d(B).

Two pencils are aliases of each other if their difference belongs to the row space of B.

Let C be the set of distinct pencils which are not defining pencils. Then we get the following

lemma.

Lemma 1 Let the pencils (a, b), (a∗, b∗) ∈ C be aliases of each other and

L =
s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j(a,b)

τ(x, y)},

and

L∗ =
s1−1∑

k=0

s2−1∑

l=0

l∗(k, l){
∑

(x,y)∈Vk,l(a∗,b∗)

τ(x, y)},

be the treatment contrasts belonging to (a, b) and (a∗, b∗), respectively. Then the parts of L

and L∗, which involve only the treatment combinations included in d(B), are identical.

Let L(B) be the part of L that involves only the treatment combination involved in

the fraction d(B) and is often called the relevant part of L. Then the relevant parts of

corresponding contrasts belonging to pencils that are aliases of each other, are identical.

Let Vi,j((a, b), B) = Vi,j(a, b) ∩ d(B). Then for any pencil (a, b) ∈ C and for its alias set A,

we get the following theorem.

Theorem 1 For (a, b) ∈ A, consider the corresponding treatment contrast

L =
s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j(a,b)

τ(x, y)},

Then

∑

(a,b)

[ s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j(a,b)

τ(x, y)}
]

= sk1
1 sk2

2

s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j((a,b),B)

τ(x, y)} (3)

where
∑

(a,b) denote the sum over all (a, b) ∈ A.

To prove this theorem, we need the following lemma.
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Lemma 2 Consider any pencil (a, b) ∈ C and let A denote its alias set. Let

φi,j((a, b)(x, y)) =





1 if a′x = αi, b
′y = βj ,

0 otherwise.
(4)

Then for every treatment combination (x, y) and every (i, j), 0 ≤ i ≤ s1− 1, 0 ≤ j ≤ s2− 1,

∑

(a,b)

φi,j((a, b), (x, y)) =





sk1
1 sk2

2 if (x, y) ∈ Vi,j((a, b), B),

0 if (x, y) ∈ d(B)− Vi,j((a, b), B),

sk1−1
1 sk2−1

2 if (x, y) 6∈ d(B).

(5)

Proof. A pencil in A is of the form (p, q) where p = a + B′
1λ and q = b + B′

2ξ where

λ = (λ1, λ2, . . . , λk1)
′, λi ∈ GF (si) and ξ = (ξ1, ξ2, . . . , ξk2)

′, ξj ∈ GF (s2). For fixed (x, y)

and (i, j),

∑

(a,b)

φi,j((a, b), (x, y)) =

#
{

λ = (λ1, . . . , λk1)
′ : x + λ′B1x = αi;

ξ = (ξ1, . . . , ξk2)
′ : b′y + ξ′B2y = βj ,

λi ∈ GF (si), ξj ∈ GF (s2)∀i, j
}

where # denotes the cardinality of a set.

(i) If (x, y) ∈ Vi,j(a, b) then a′x + λ′B1x = αi for all k1 × 1 vectors over GF (s1) and

b′y + ξ′B2y = βj for all k2 × 1 vectors over GF (s2). Hence the RHS of (5) is sk1
1 sk2

2 .

(ii) If (x, y) ∈ d(B)−Vi,j((a, b), B), then B1x = 0, B2 = 0. Also, a′x 6= αi and/or b′y 6= βj .

Then
∑

(a,b) φi,j((a, b), (x, y)) = #
{
(λ, ξ) : a′x = αi, b

′y = βj

}
= 0.

(iii) If (x, y) 6∈ d(B), then B1x 6= 0, B2y 6= 0. Trivially a′x + λ′B1x = αi iff (B1x)′λ =

αi − a′x. Since B1x 6= 0, exactly as in the proof of Lemma 2.1, one can freely choose

(λ2, . . . , λk1−1) in sk1−1
1 ways to satisfy the above equation. Similarly b′y+ξ′B2y = βj

gives sk2−1
2 choices of ξl’s. Combining the values of λk’s and ξl’s, the result follows.
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Proof of Theorem 1. Let Ω denote the set of all sn1
1 sn2

2 treatment combinations. Using

Lemma 3.2 and the indicator variable φi,j((a, b)(x, y)) in (4),

∑

(a,b)

[ s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j(a,b)

τ(x, y)}
]

=
∑

(a,b)

[ s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Ω

φi,j((a, b)(x, y))τ(x, y)}
]

=
s1−1∑

i=0

s2−1∑

j=0

l(i, j)
{ ∑

(x,y)∈Ω

[ ∑

(a,b)

φi,j((a, b)(x, y))
]
τ(x, y)

}

= sk1
1 sk2

2

s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j((a,b),B)

τ(x, y)},

since
∑

l(i, j) = 0.

The RHS of (3) is a contrast involving only the treatment combinations included in

d(B). Therefore the RHS and hence the LHS of (3) will be estimable using the plan d(B).

In other words, while pencils belonging to the same alias set, are confounded with one

another (Lemma A.3), the sum of corresponding contrasts, belonging to such pencils is

estimable in d(B). Thus any treatment contrast belonging to a pencil (a, b) which is not a

defining pencil is estimable in d(B) if and only if corresponding contrasts belonging to all

other pencils that are aliased with (a, b) are ignorable.

We say that a pencil is estimable in d(B) if so is every treatment contrast belonging to

it. Similarly, if every treatment contrast belonging to a pencil is ignorable, then the pencil

itself is called ignorable. Hence the following result is immediate.

Result 3 A pencil b, which is not a defining pencil, is estimable in d(B) if and only if all

other pencils that are aliased with b are ignorable.

Example

Now consider the fractional factorial design used for the Paint experiment. This kind of

fraction treats the two- and three-level factors separately, leading to a product array. It is

easy to see that these two-level factors form a 23−1 design with C = AB. The 23−1 design

is used for the first four rows and repeated for the next eight groups of four rows. The

three-level factors form a 33−1 design with F = DE. Each of the nine combinations of the

33−1 design appears in four consecutive entries in Table 16. The 36-run design in Table 16
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consists of the 4 × 9 combinations of the 23−1 design and the 33−1 design and is called a

23−1 × 33−1 design.

The defining relation of the 23−1 × 33−1 design can be obtained from those of its two

component designs: I = ABC and I = DEF 2. So we decide to include the treatment

combinations x = (a, b, c, d, e, f) satisfying a + b + c = 0 mod 2 and d + e + 2f = 0 mod 3.

There are 4 such choices of (a, b, c) and 9 such choices of (d, e, f). Combining these, we will

have 4 × 9 = 36 treatment combinations in our plan which will be in the from of product

array. The alias sets will again be of three types :

Type I (involving only two-level factors arising from I = ABC): These are A = BC,

B = AC, C = AB, each carrying 1 d.f..

Type II (involving only three-level factors arising from I = DEF 2): there will be 4 such

alias sets, each carrying 2 d.f.. these are D = DE2F = EF 2; E = DF 2 = DE2F 2;

F = DE = DEF and DE2 = DF = EF .

Type III (involving the “mixed” pencils discussed earlier): These are obtained by com-

bining each type I alias set with each type II alias set, e.g., a typical alias set of type

III will be AD = ADE2F = AEF 2 = BCD = BCDE2 = BCEF 2. There will be

3× 4 = 12 such alias sets each carrying 2 d.f..

Thus the three types of alias sets mentioned above will together carry 3× 1 + 4 × 2 +

12× 2 = 35 d.f.. This again agrees with the fact that there are 36 treatment combinations

in the chosen fraction.

For any pencil in a type III alias set, it is not hard to see that each set Vi,j corresponding

to that pencil will contain six of the treatment combinations included in our fraction. To

see this, consider the pencil BCDE2F . A treatment combination x = (a, b, c, d, e, f) in

our fraction will then belong to the corresponding Vi,j if it satisfies b + c = i mod 2 and

d + 2e + f = j mod 3, in addition to satisfying a + b + c = 0 mod 2 and d + e + 2f = 0

mod 3 needed for inclusion in the fraction. Now the first and third of the equations just

mentioned yield two solutions for (a, b, c) while the second and fourth of these equations

yield three solutions for (d, e, f). Combining these, we get six solutions altogether.
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3.4 Summary

The designs discussed here are called cross arrays (inner-outer array in Taguchi’s terminol-

ogy). They are commonly used in robust parameter designs. Although the cross arrays have

been used for mixed-level designs (Shoemaker et al., 1991), their aliasing relations have not

been studied rigorously. In this chapter, we have discussed the effect aliasing for fractional

factorial designs of mixed-level designs. The results obtained for mixed-level factorial and

fractional designs are similar to that of symmetric factorials. Here only sn1
1 × sn2

2 factori-

als are discussed, although with heavier notation, and without any significant conceptual

change, it is possible to obtain general results for sn1
1 × sn2

2 × . . . snm
m factorials. One draw-

back of the above approach is that the cross arrays may become too large. The rigorous

study of mixed-level cross arrays gives a deeper insight on the estimation properties of the

design and paves the way for further research in extending the minimum aberration and

estimation capacity criteria for such designs.
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CHAPTER IV

SELC : SEQUENTIAL ELIMINATION OF LEVEL

COMBINATIONS BY MEANS OF MODIFIED GENETIC

ALGORITHMS

4.1 Introduction

In many scientific problems, the goal is to select an optimal candidate from a large pool

of potential candidates. Genetic Algorithms (GAs) are a popular optimization technique

when searching for global optimums in a large candidate or design space. A modification

of GAs, called SELC, is proposed in this paper, which outperforms classical GAs in several

practical situations. Here we present two scenarios where the SELC method can be useful.

The first example is in the context of computer experiments, while the second example

arises in pharmaceutical industries.

In the last fifteen years many phenomena that could only be studied using physical

experiments can now be studied by computer experiments. In a computer experiment, a

deterministic output, y(x), is computed for each set of input variables, x, using numerical

methods that are implemented by (complex) computer codes (Santner et al., 2003). In such

cases, the complex function can be thought of as a “black box” and the proposed SELC

method can be used to obtain the optimal settings efficiently. In Section 5, we illustrate

how the SELC method can be efficiently used for a “black box” type problem.

The SELC method also has potential applications in the pharmaceutical industry. Within

the past thirty years, technologies have been developed to explore and synthesize vast num-

bers of chemical entities. This technology, known as combinatorial chemistry, has been

widely applied in the pharmaceutical industry, and is gaining interest in other areas of

chemical manufacturing (Leach and Gillet, 2003, Gasteiger and Engel, 2003). In general,

combinatorial chemistry identifies molecules that can be easily joined together, and employs
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robotics to physically make each molecular combination. Depending on the initial number

of molecules, the number of combinations can be extremely large. For example, consider a

core molecule onto which various reagents can be theoretically added to three locations. If

one hundred reagents can be added at each location on the core, then one million products

can potentially be synthesized. In the pharmaceutical industry, combinatorial chemistry

has been used to enhance the diversity of compound libraries, to explore specific regions of

chemical space (i.e. focused library design), and to optimize one or more pharmaceutical

endpoints such as target efficacy, or ADMET (absorption, distribution, metabolism, excre-

tion, toxicology) properties (Rouhi, 2003). While it is theoretically possible to make a large

number of chemical combinations, it is generally not possible to follow-up on each newly

synthesized entity. Instead of synthesizing all possible molecular combinations, combinato-

rial libraries are computationally created and evaluated using structure-based models. (For

this purpose, specialized software uses “black box” type functions.) In addition, chemists

look for reagent combinations that are known to produce undesirable compounds, and at-

tempt to avoid these combinations during synthesis. Using these constraints, a subset of

promising reagents is selected to generate a combinatorial library. By construction, the

SELC is a natural fit for searching for optimal molecules in combinatorial chemistry.

These real-life scenarios can be thought of as large dimensional design of experiment

problems where the challenge is to identify the optimal design settings. Statistical de-

sign and analysis of experiments is an effective and commonly used tool in scientific and

engineering investigation to understand and/or improve a system. Identifying important

factors and choosing factor levels are among the first and most fundamental issues facing an

experimenter. But, when confronted with a large number of important factors, designing

an experiment can be difficult. Classical experimental design relies heavily on algebraic

properties such as orthogonality. However, orthogonality does not allow the flexibility to

accommodate all kinds of promising follow-up runs, which, in turn, makes finding suitable

designs for large-scale problems difficult, particularly when the factors have more than two

levels.

The use of high-fidelity computer simulations of physical phenomena (Bates et al., 1996)
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has stimulated new research into ways in which experimental design can be applied to such

problems. One technique, motivated by design of experiments, was introduced by Wu,

Mao, and Ma (1990) (hereafter abbreviated as WMM) known as Sequential Elimination of

Levels (SEL). The idea of SEL is opposite to that of the “greedy algorithm”: instead of

focusing on factor levels that improve the response, SEL focuses on those levels that worsen

the response. Based on this idea, SEL eliminates one level of each factor in each sequence

of the experiment. However, this kind of marginal analysis does not perform well in the

presence of interactions, which is generally the case for high dimensional response surfaces.

In this paper, the idea of SEL is extended to accommodate situations where important

interactions are present. But, to make this accommodation, we must abandon follow-up

designs that are orthogonal. Instead, a modified version of Genetic Algorithms (GAs) will

be used to determine subsequent design points.

GAs have most often been viewed from a biological perspective. The metaphors of

natural selection, cross breeding, and mutation have been helpful in providing a framework

to explain how and why GAs work. Thus, it makes sense that most practical applications

of GAs are rooted in the context of optimization. In an attempt to understand how GAs

function as optimizers, Reeves and Wright (1999) considered GAs as a form of sequential

experimental design. Recently, GAs have been used quite successfully in solving statistical

problems, particularly for finding near optimal designs (Hamada et al. 2001, Heredia-

Langner et al. 2003, 2004).

This chapter is organized as follows. In Section 2, we review the idea of SEL and

classical GAs. A new version of SEL, called SELC is proposed in Section 3. The Bayesian

model selection, which can be used in this process, is discussed in the Appendix. Behavior

of the SELC algorithm is discussed in Section 4. In Section 5, the proposed algorithm

is applied to three functions, including one from Shekel’s family, and the performance of

this search methodology is investigated via simulations. In Section 6, SELC is used for

identifying potentially good compounds for synthesization in a pharmaceutical industry.

Some concluding remarks are given in Section 7.
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4.2 Review : Sequential Elimination of Levels and Genetic
Algorithms

SEL : WMM proposed their search method, based on orthogonal arrays, as follows :

1. Start with an appropriate orthogonal array.

2. For each factor, eliminate those level(s) with the worst mean value(s) of the perfor-

mance measure computed from the current array.

3. Choose an orthogonal array (typically of a smaller size) for the remaining levels, and

replace the array in step 1 with the new array.

4. Conduct another experiment on the new array.

5. Repeat steps 2− 4 if necessary.

In step 1, if the mean is replaced by another descriptive statistic z (for example, minimum),

the method is called SEL(z).

The main drawback of SEL is that its method of search is too restrictive for many

optimization problems. First, for experiments that contain important interactions, the

SEL method is not optimal because it eliminates individual levels of each factor without

considering interactions. Hence, SEL can blindly eliminate a factor level that is required

for the optimal run of the experiment. Second, SEL requires that subsequent experiments

follow an orthogonal array. As mentioned previously, our modification of the SEL will

prevent it from using an orthogonal array. In addition, orthogonal arrays are not flexible

enough to handle complex response surfaces. To overcome this problem, we have developed

a modified GA to determine subsequent design points.

GAs : Before describing the novel approach to improve SEL, we shall briefly review GAs

(Holland, 1975). GAs are stochastic optimization tools that work on “Darwinian” models

of population biology and are capable of obtaining near-optimal solutions for multivariate

functions without the usual mathematical requirements of strict continuity, differentiability,

convexity or other properties. The algorithm attempts to mimic the natural evolution of

a population by allowing solutions to reproduce, creating new solutions, and to compete
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for survival. The idea of GAs is to get “better solutions” using “good solutions”, and the

algorithm process is as follows:

1. Solution representation : For problems that require real number solutions, a simple

binary representation is used where unique binary integers are mapped onto some

range of the real line. Each bit is called a gene and this binary representation is called

chromosome.

Once a representation is chosen, the GA proceeds as follows. A large initial population

of random candidate solutions is generated; these are then continually transformed

following steps 2 and 3.

2. Select the best and eliminate the worst solution on the basis of a fitness criterion

(e.g., higher the better for a maximization problem) to generate the next population

of candidate solutions.

3. Reproduce to transform the population into another set of solutions by applying the

genetic operations of “crossover” and “mutation”.

(a) Crossover : A pair of binary integers (chromosomes) are split at a random

position and the head of one is combined with the tail of other and vice-versa.

(b) Mutation : The state (0 or 1) of a randomly chosen bit is changed. This helps

the search avoid being trapped into local optima.

4. Repeat steps (2) and (3) until some convergence criterion is met or some fixed number

of generations has passed.

This algorithm has been shown to converge by Holland (1992), who first proposed this

procedure in its most abstract form and discussed it in relation to adaptive and nonlinear

systems.

4.3 SELC : Sequential Elimination of Level Combinations

The main drawback of SEL is that its search is too restrictive. This method eliminates a

level on the basis of marginal means which can be affected by the presence of interactions.
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In order to overcome this drawback, we propose eliminating level combinations instead of

just a single level. This modification is capable of capturing important interactions and

provides more flexibility in the choice of follow-up design points. Our modification of SEL,

Sequential Elimination of Level Combinations (SELC), incorporates the fundamentally new

ideas of the forbidden array and weighted mutation. In Section 4, we shall see how these two

novel concepts, motivated by the ideas of Design of Experiments, make the search algorithm

much more efficient than classical GAs.

Recall that by the effect hierarchy principle (Wu and Hamada, 2000), two-factor in-

teractions are more important than higher order interactions. In SELC, we employ this

principle by allowing the algorithm to identify important interactions with respect to the

optimization problem. Here we propose to eliminate those factor settings which have the

same level combinations as that of the worst one for two factors. For larger dimensions,

third or higher order tuples may need to be considered to narrow the search space. The

worst observed runs are stored in the forbidden array as the search procedure continues.

New experiments are conducted with runs suggested by the SELC algorithm, which uses the

idea of GAs, and promising level settings for a new run are achieved by using better runs

from the previous experiments. Before formally defining the SELC algorithm, we define the

concepts of the forbidden array and weighted mutation, both required by the algorithm. We

end this section with a constructed example to illustrate the SELC algorithm.

Forbidden array: In some situations, prior knowledge is available about certain factor

level combinations that lead to undesirable results. Consider the introductory combinatorial

chemistry example. In this setting, chemists can often identify runs (i.e. new molecules),

based on their scientific knowledge and prior experience, which are not worth creating in

the laboratory. These runs can be placed into the forbidden array before initializing the

SELC algorithm.

In the absence of prior knowledge, the SELC is initialized with an orthogonal design.

The data from this initial experiment are then used to suggest run(s) that are not optimal.

These run(s) are then placed into the forbidden array.

In subsequent steps of the experiment, the worst run(s) are chosen with probability
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governed by a “fitness” measure (i.e., value of y) and are stored in the forbidden array.

Furthermore, we specify the strength and order of the forbidden array. The number of

runs placed into the forbidden array at each sequence of the experiment defines the array’s

strength. More specifically, a forbidden array of strength s contains the level combinations

of the s worst runs of the experiment at each stage of the iterations. In addition, the runs

stored in the forbidden array define a set of level combinations that will be prohibited from

subsequent runs of the experiment. The number of level combinations that are prohibited

from subsequent experiments defines the order of the forbidden array. A forbidden array of

order k implies that any combinations of k or more levels from any array in the forbidden

array will be prohibited from being used in subsequent runs of the experiment. Thus, as

the order decreases, the number of forbidden design points increases. Consequently, the

forbidden array is the generating set of all runs which are forbidden by SELC.

For example, consider an experiment in which the goal is to maximize a response.

Suppose the experiment has four factors, each at three levels (0, 1, and 2) and we choose a

forbidden array with strength 1 and order 2. Further, suppose that the minimum value of

E(y) occurs when all factors are set to 0, and this design point is run during the experiment.

When this run is placed into the forbidden array, it will prevent any design points with two

or more factors set to level 0 (order=2). Note that only one member will be added to the

forbidden array at each step (strength = 1).

Here the special case of k = 1 corresponds to the SEL method of WMM. Also, s = 1

corresponds to SEL(mini) of WMM. However, unlike the SEL-approach, the choice of worst

run is probabilistic in SELC. In Section 6, we will illustrate how the choice of strength

affects the performance of the search procedure.

After constructing the forbidden array, SELC starts searching for better level settings.

The search procedure is motivated by GAs. The first step, as discussed in the review of

GAs, is solution representation. Here the runs are viewed as chromosomes. For an m-

level factor, the levels are denoted by 0, 1, . . . , m− 1. For example, for a 34 experiment, the

design points(chromosomes) would take the form (0, 0, 0, 0), (0, 0, 0, 1),. . ., (2, 2, 2, 2). Unlike

classical GAs, the chromosomes are not required to be binary arrays. Next we identify, with
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probability proportional to the “fitness”, i.e. the value of y, the best runs to produce

offspring of the next generation. After the good candidates are identified, they reproduce to

generate potentially better candidates. In SELC, crossover is performed in the usual way,

as explained in Section 2, but a modification is proposed for mutation.

Weighted mutation: In a generic GA, genes mutate with an equivalent specified proba-

bility. Hence, the mutation rate does not incorporate other information gathered from prior

knowledge about the system. For the SELC, we propose the use of prior information for

generating mutation probabilities. For instance, suppose we know that the factor, F , has a

significant main effect and no significant two-factor interactions. Then, we will change the

level of this factor to a new level, l, with probability pl, where

pl ∝ y(F = l). (1)

Next, suppose that factors F1 and F2 have a significant interaction. Then, the mutation

should have a joint probability on F1 and F2. That is, the mutation will occur if either F1

or F2 is randomly selected. Factor F1 will be set to level l1 and factor F2 to level l2 with

probability ql1,l2 , where

ql1l2 ∝ y(F1 = l1, F2 = l2). (2)

If the selected factor does not have significant main effects or interactions, then its value is

changed to any admissible levels with equal probability. Note that if the aim is to minimize

E(y), then the probabilities in (1) and (2) should be inversely proportional to ȳ.

A linear regression model can be used to identify the significant effects. But, a better,

more time consuming approach is to consider a Bayesian variable selection strategy which

is discussed in the Appendix. This method is used in the analysis illustrated at the end of

this section.

Starting Design : The starting design is an orthogonal array, which allows us to efficiently

estimate factor effects used in the process of weighted mutation. However, as the search

proceeds, unlike SEL, the orthogonal structure of the design matrix will not be retained.

Nonorthogonality is justified because the follow-up designs should be more flexible than the

starting one, utilizing the information already at hand.
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The SELC algorithm:

Initialize the design with an appropriate orthogonal array.

1. Conduct the experiment.

– Stop when the stopping criterion is achieved. (See below).

2. Construct the forbidden array and choose its strength and order.

3. Generate b new offspring.

– Select offspring for reproduction with probability proportional to their “fitness.”

– Crossover the offspring.

– Mutate the positions using weighted mutation.

4. Check eligibility. An offspring is eligible if it is not prohibited by any of the members

of the forbidden array. If an offspring is ineligible, then discard and generate another

new offspring.

5. If b = 1 and more than one offspring were generated, then randomly select one offspring

for the experiment.

Depending on the situation, the SELC method can be fully (b = 1) or batch (b =

b) sequential. For fully sequential SELC, a new eligible offspring is generated in each

iteration and the experiment is conducted. For batch sequential SELC, a new set of eligible

offspring is generated in each iteration and the experiment is conducted. Depending on the

application, either fully sequential or batch sequential may be more suitable. For example,

in combinatorial chemistry, a batch sequential SELC is more appropriate.

Fully sequential SELC method is used in the illustrative example of this section as well

as in Section 6. On the other hand, a batch sequential SELC method is used in Section 5.

In the later case, a fixed number of offspring are generated before running the experiments

to evaluate their performance.

Stopping Rules : The stopping rule is subjective and depends on progression of the

algorithm and experimental constrants. As the runs are added, the experimenter can decide,
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in a sequential manner, whether significant progress has been made towards optimization.

Sometimes a target value or near optimum is predetermined for the experiment. Once the

target is attained, the search can be stopped. But, typically, the number of experiments

is limited by the resources at hand. This is often the case for the combinatorial chemistry

example discussed in the Introduction. Examples of Section 5 illustrate a situation in which

an experiment is limited by number of runs.

To illustrate the SELC method, consider a hypothetical experiment with 9 factors (de-

noted by A-I) each at 3 levels. In this example (and throughout this paper), we use the

linear-quadratic system for coding linear and quadratic effects (Wu and Hamada, 2000)

in order to eliminate correlation among a factor’s linear and quadratic components. The

linear-quadratic coding is expressed as follows :

level

0

1

2

−→

linear quadratic

−1 1

0 −2

1 1

The response is generated from the following model :

y = 2 + (A + 2B − 3C + D + 2E − 2A2 + 2B2 + 1.5C2

−3AC + 2.5AE −BF − 2CG + DGI)2 + ε,

where ε is the standard normal error. In this analysis, we only consider the linear and

quadratic effects and linear-by-linear interactions. Our aim is to find a setting for which

the expected value of y is maximized.

The starting design for the SELC is an orthogonal array, 9 columns of an OA(243, 320, 3).

Without having a prior knowledge about the unfavourable runs, here we use a forbidden

array with s = 1 and k = 6, and use a weighted mutation with the Bayesian variable

selection strategy. After choosing the first member of the forbidden array, the search for

better level settings is continued via crossover and weighted mutation. Upon computing the

posterior probabilities of C and BC, we find that these are much larger than the posterior

probabilities of the other effects. According to the weighted mutation scheme, if factor B
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or C is randomly selected for mutation, we must evaluate the ql1l2 ’s in (2). The ql1l2 ’s are

given below :

Factors C = 1 C = 2 C = 3

B = 1 0.0526 0.0556 0.1212

B = 2 0.0973 0.0524 0.0865

B = 3 0.2933 0.1368 0.1043

After generating the new offspring, we check for eligibility and the the search continues. In

this example, using the fully sequential version of SELC, the search was stopped after 400

runs. The maximum value of y was 679.68, which corresponds to the level setting of the

third best design point. Note that the SELC algorithm found this near optimum design

point by evaluating only 2.03% of all possible combinations.

4.4 A Justification Of Crossover And Weighted Mutation

Steps of crossover and weighted mutation may be better understood through the following

analysis. Consider the problem of maximizing K(x), x = (x1, . . . , xp), over ai ≤ xi ≤ bi.

Instead of solving the p-dimensional maximization problem

max
{

K(x) : ai ≤ xi ≤ bi, i = 1, . . . , p

}
, (3)

the following p one-dimensional maximization problems are considered,

max
{

Ki(xi) : ai ≤ xi ≤ bi, i = 1, . . . , p

}
, (4)

where Ki(xi) is the ith marginal function of K(x),

Ki(xi) =
∫

K(x)
∏

j 6=i

dxj (5)

and the integral is taken over the intervals [aj , bj ], j 6= i. If the xi in (3) and (4) can take

only a finite number of values (discrete xi), the integral in (5) is replaced by a finite sum.

Let x∗i be a solution to the ith problem in (4). The combination x∗ = (x∗1, . . . , x∗p) may be

proposed as an approximate solution to (3). A sufficient condition for x∗ to be a solution

of (3) is that K(x) can be represented as

K(x) = ψ

(
K1(x1), . . . ,Kp(xp)

)
(6)

51



and

ψ is nondecreasing in each Ki.

A special case of (6), which is of particular interest to statisticians, is

K(x) =
p∑

i=1

αiKi(xi) +
p∑

i=1

p∑

j=1

λijKi(xi)Kj(xj). (7)

If λij is nonzero, then SEL will have difficulty finding the optimal solution. However, SELC

is more flexible and is better suited to find the optimal solution.

While the SEL method emphasizes on orthogonal arrays, SELC does not. The basic

nature of GAs does not allow us to retain the orthogonal structure of the design. Though or-

thogonal arrays are good for estimating the factorial effects, they are not available for every

combination of factor levels and for every run size. GAs do not require orthogonality and

hence are more flexible in exploring new design points. This flexibility enhances the chance

of getting the best setting in relatively fewer runs. If the response surface is very smooth,

then any standard design and analysis should find the optimal settings. However, for many

problems the response surface is not smooth. For instance, if the surface is undulated with

local maxima and minima, the SELC method can perform well. The random nature of the

GA-type search explores the whole surface rapidly, while the weighted mutation uses prior

knowledge about the surface to wisely direct the search.

The convergence of classical GAs was provided by Holland (1975) using the concept of

schema. The SELC method makes a significant amount of modification to classical GAs

and it is not obvious that the modifications proposed meet the requirements for convergence

in Holland’s paper. However, the simulation studies provided in the next section are quite

convincing about the convergence.

4.5 Examples

We investigate the performance of SELC via several diverse simulations. Three different

“ill-behaved” functions are considered and the effects of the fine tunings are illustrated

through a variety of examples. For all these examples, we have the following settings.

For crossover, after choosing one position randomly, parent chromosomes are split at that
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position and the left fragment of the first parent chromosome is combined with the right

fragment of the second parent chromosome to produce the first offspring. Then, mutation-

locations are chosen randomly for each offspring and weighted mutation is performed as

described in Section 3. For comparison, some simulations have been done with unweighted

mutation which allows the level of the factor to be changed randomly to any other admissible

level. For all simulations, the population size is 20 which corresponds to the batch size 20

(i.e. b = 20). For each of these examples, we assume there is no prior knowledge about

undesirable runs. Hence, we initialize the forbidden array using information gathered from

the initial orthogonal array.

Example 1 : Shekel 4 function (SQRIN)

The function

y(x1, . . . , x4) =
m∑

i=1

1∑4
j=1(xj − aij)2 + ci

is known as Shekel’s function (Dixon and Szego, 1978), where the quantities {aij} and {ci}
are given in Table 7. The region of interest is 0 ≤ xj ≤ 10 and only integer values are

considered. This function is one of the “black box” functions of computer experiments,

discussed in the Introduction.

Table 7: Coefficients for Shekel’s function (m = 7)

i aij , j = 1, . . . , 4 ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3

This set-up corresponds to an experiment with four factors each at 11 levels (i.e. the

11 integers). The starting design is an orthogonal array of 242 runs which is obtained

by choosing 4 columns from the OA(242, 1123) (Hedayat et al., 1999). In this example,

unlike Section 3, Bayesian variable selection strategy was not used. In each step, Gibbs
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sampling consumes significant amount of time which would make it extremely difficult to

run thousands of simulations. Instead, regression analysis is used to identify the important

factors (at 5% level of significance). Forbidden arrays of order 3 are considered because

order 1 or 2 becomes too restrictive for this problem by forbidding too many runs (and

also, the results are not satisfactory). The results are compared with those of a random

search and with simple GA.

Table 8 summarizes the results. “Random Search” corresponds to a design where all runs

are selected randomly. “Random Followup” stands for a design, where the search begins

with the same starting design and follow-up runs are selected randomly. “Genetic Algo”

stands for a classical GA where the runs are looked upon as chromosomes and crossovers

and mutations are done in the usual way. Recall that GA corresponds to a special case

of SELC with strength 0 and unweighted mutation. “SELC (No Forbiddance)” refers to

weighted mutation only, because in this case, forbidden array is set to be empty (i.e.,

strength = 0). On the other hand, “SELC (Unweighted Mutation)” refers to forbiddance

only. Here unweighted mutation is performed instead of weighted mutation. Finally, “SELC

(Weighted Mutation)” refers to the SELC method proposed in Section 3.

The performance of the search algorithm is measured by its ability to find the global

maximum. We also include its performance on finding second through fifth best values,

because these five values stand apart from the others on the response surface.

In the first simulation, the search is stopped after 1000 runs, which is 6.83% of all

possible 114 runs (Figure 4.5). As seen from Figure 4.5, GA performs better than random

searches and SELC performs better than GA. The values for “SELC (No Forbiddance)”

show the beneficial effect of weighted mutation (here strength of the forbidden array is 0)

and the values for “SELC (Unweigthed Mutation)” show the beneficial effect of forbidden

array. “SELC (No Forbiddance)” finds the maximum in 53% of the cases, as opposed to

48% of GA. On the other hand, “SELC (Unweigthed Mutation)” has success rate 55.5%.

Finally, when the power of both forbidden array and weighted mutation are explored, SELC

performs satisfactorily in 57.8% of the times. The most benefits are achieved by considering

the weighted mutation. This effect is even more pronounced in the next example.
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Figure 1: Example 1 : % of success in identifying global maximum for different methods
(run size = 1000) [RS = Random Search, RF = Random Followup, GA = Genetic Algo,
SELC(NF) = SELC(No Forbiddance), SELC(UNWTED) = SELC(Unweighted Mutation),
SELC = SELC(Weighted Mutation), S = Strength]

As the strength of the forbidden array increases, the power of the search algorithm

also increases. However, the strength cannot be increased arbitrarily, because it will then

prohibit too many design points from being considered. It should also be noted that the

improvement of the performance of SELC with the increment of the strength is not so

prominent for the same function when smaller run sizes are considered. In the second case,

the search is stopped after 700 runs, and the improvements are not as significant. For

Shekel 4 function, evolutionary algorithms would take larger runs to reap the benefits.
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Table 8: Example 1 : % of success in identifying global maximum for different methods
based on 1000 simulations (run size = 1000 and 700).

Max 2nd 3rd 4th 5th Total
Strength best best best best

1000 RUNS
Random Search 6.3 11.5 5.7 10.1 4.2 37.8
Random Followup 4.7 9.3 3.7 9.4 2.5 29.6
Genetic Algo 11.8 7.0 10.4 15.1 4.5 48.4
SELC (No Forbiddance) 14.0 7.2 12.4 14.1 5.4 53.1

1 13.0 9.3 9.3 13.4 5.3 50.3
SELC 2 13.3 6.5 11.7 16.1 5.8 53.4
(Unweighted 3 13.1 7.9 12.4 15.6 5.3 54.3
Mutation) 4 13.9 8.3 11.4 14.9 5.9 54.4

5 12.1 8.4 13.9 16.0 5.1 55.5
1 13.1 8.3 11.5 17.3 5.9 56.1

SELC 2 13.2 8.6 13.2 14.9 3.6 53.5
(Weighted 3 14.6 7.7 12.4 16.6 4.8 56.1
Mutation) 4 11.9 10.1 13.6 16.5 4.3 56.4

5 13.5 8.4 13.5 18.5 3.9 57.8

700 RUNS
Random Search 4.2 9.0 4.0 9.2 4.1 30.5
Random Followup 3.0 6.8 3.0 5.1 2.4 20.3
Genetic Algo 5.8 5.6 6.0 9.2 3.3 29.9
SELC (No Forbiddance) 5.4 4.7 7.2 11.3 4.8 33.4

1 5.8 6.1 6.0 9.9 4.9 32.7
SELC 2 6.4 4.3 4.6 10.1 5.7 31.1
(Unweighted 3 7.1 4.3 5.9 8.7 5.2 31.2
Mutation) 4 7.6 4.1 6.0 11.5 4.7 33.9

5 5.2 4.6 6.6 10.2 4.9 31.5
1 6.3 5.5 6.9 11.5 4.0 34.2

SELC 2 6.6 4.9 7.2 10.6 3.1 32.4
(Weighted 3 7.2 4.6 9.6 10.6 4.1 36.1
Mutation) 4 5.9 5.9 7.0 10.7 3.3 32.8

5 5.9 4.7 8.5 10.3 4.1 33.5
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Example 2

Consider the function

y(x1, . . . , x4) = 1 + {β′x + (γ′x)2 + η′x× τ ′x}2,

where the parameters are given in Table 9. The region of interest is 0 ≤ xj ≤ 10 and

only integer values are considered. This choice is motivated by discussions in Section 4,

especially (4.5).

Table 9: Coefficients for the function in Example 2

β γ η τ

1 -3 2 -5
-2 -4 -10 0
2 5 2 -5
-1 -6 4 0

As in Example 1, this set-up also corresponds to an experiment with four factors each

at 11 levels. The simulations are done with two starting designs: orthogonal array of

size 121 and 242, which are obtained by choosing four columns from OA(121, 1112) and

OA(242, 1123) respectively (Hedayat et al., 1999). The results are summarized in Table 10

and also in Figure 4.5. The simulations are done for a total of 300, 500 and 1000 runs.

GA performs much better than random search. This example shows that forbiddance

need not always enhance the performance. In fact, without weighted mutation, forbiddance

alone (i.e., “SELC (Unweighted Mutation)”) can perform worse than GA. This means

that good runs are located in the “neighborhood” of bad runs and the response surface

y(x1, . . . , x4) is very undulated. However, weighted mutation significantly improves the

performance of SELC. The main advantage of using SELC is that it uses prior information

to direct the GA, thus finding a near optimum more quickly. This effect is clearly demon-

strated for smaller runs, namely, with total run size 300 and 500. If the search is continued

long enough, this gap will be narrowed and SELC may not perform much better than GA.

Consider the first case where the starting design is an orthogonal array of size 121. For 300

runs, GA finds the maximum in 15% of the cases whereas SELC (Weighted Mutation) finds
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Table 10: Example 2 : % of success in identifying global maximum for different methods
based on 1000 simulations

Strength 121-Run Design 242-Run Design
Total Run Size 300 500 1000 300 500 1000
Random Search 1.7 3.6 7.0 1.7 3.6 7.0
Random Followup 1.1 2.5 5.7 0.4 2.4 4.6
Genetic Algo 15.1 39.5 79.7 3.4 28.9 79.5
SELC (No Forbiddance) 43.7 76.7 97.8 16.7 68.3 97.5

1 13.9 39.9 80.9 3.2 30.9 77.2
SELC 2 13.2 38.9 83.4 3.6 30.1 79.6
(Unweighted 3 17.0 41.4 82.3 4.3 31.4 78.4
Mutation) 4 15.4 40.2 81.1 3.7 28.3 76.9

5 15.0 44.1 81.5 3.6 29.5 78.5
1 41.3 76.9 97.3 17.1 67.4 98.4

SELC 2 42.2 76.5 97.3 15.5 65.4 96.8
(Weighted 3 40.5 75.1 98.2 15.7 67.6 97.8
Mutation) 4 40.5 75.9 98.0 15.7 69.6 98.0

5 39.9 73.9 97.9 18.2 66.1 96.9

it in more than 40% of the cases. For 500 runs, the values are 40% and 75%, respectively.

Finally for 1000 runs, the success rates are 80% and 97%, respectively. The ratio of the

success rate decreases as the run size increases, which is not surprising because these kind

of evolutionary algorithms eventually find the near optimal solution, if they are run long

enough. However, SELC finds the optimal quickly.

For the second case, the starting design is an orthogonal array of size 242. Here, for

a total run size 300, the evolutionary-type algorithms are not expected to perform well

because only 58 follow-up runs are available. Even with these few follow-up runs, SELC

(Weighted Mutation) finds the maximum in more than 15% of the cases. With larger run

sizes, the performance of both GA and SELC improves, with SELC performing significantly

better than GA.

The overall pattern of the performance of SELC for both starting designs are similar.

Also for 1000 runs, the effect of starting design diminishes and the success rates are very

close for both cases. Note that, for this example, starting with a 121-run design, with only

300 evaluations (2.05% of all possible 114 runs), SELC finds the global maximum in more

than 40% of the cases.
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Figure 2: Example 2 : % of success in identifying global maximum for different methods
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Example 3

Levy and Montalvo (1985) provide the following function:

y(x1, . . . , xn) = sin2
{

π

(
xi + 2

4

)}
+

n−1∑

i=1

(
xi − 2

4

)2 {
1 + 10 sin2

(
π

(
xi + 2

4

)
+ 1

)}

+
(

xn − 2
4

)2 {
1 + sin2 (2π (xn − 1))

}
.

Here n = 4 and only integer values of xi’s (0 ≤ xi ≤ 10) are considered. This again

corresponds to an experiment with four factors each at 11 levels. Results are summarized

in Table 11. Here the performance of SELC is quite similar to that of Example 2. Note

that the analytic nature of the test function is quite different from that of the previous two

examples. It is a standard test function in global optimization literature and is presented

here to demonstrate the satisfactory performance of the SELC method over a variety of test

functions.

Table 11: Example 3 : % of success in identifying global maximum for different methods
based on 1000 simulations

Strength 121-Run Design 242-Run Design
Total Run Size 300 500 1000 300 500 1000
Random Search 5.8 9.3 18.4 5.0 9.3 18.4
Random Followup 2.9 7.7 15.5 2.9 7.7 15.5
Genetic Algo 16.8 43.1 80.7 2.9 33.3 81.8
SELC (No Forbiddance) 30.3 62.2 94.5 5.9 50.6 93.8

1 17.6 43.1 84.5 2.9 31.6 82.2
SELC 2 16.7 42.9 84.3 3.3 32.4 82.0
(Unweighted 3 18.5 44.5 83.5 4.7 33.6 83.4
Mutation) 4 21.2 44.1 83.9 3.4 33.4 81.9

5 16.6 47.5 83.9 3.8 34.0 84.5
1 28.4 66.2 94.4 6.6 45.9 93.5

SELC 2 26.0 66.2 92.8 7.5 50.5 91.8
(Weighted 3 31.1 63.5 92.2 7.2 49.6 93.7
Mutation) 4 29.4 63.8 90.1 7.6 46.8 91.2

5 31.9 65.3 86.1 7.1 46.9 91.3

Examples 1 and 3 are from standard test functions in the global optimization literature.

By closely examining those functions, one may have some idea about the location of the
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global maximum and may be able to save some computations. However, in many real life

examples, (e.g., computer experiments) the analytic form of the function is either unknown

or very complicated. In these situations, the function can be thought of as a “black box”

and SELC method should perform well.

4.6 Application

The SELC method was applied to a combinatorial chemistry problem where a combination

of reagents was desired to maximize target efficacy. For this example, target efficacy is

measured by a compound’s percent inhibition of activity for a specific biological screen.

For this screen, a percent inhibition value of 50 or greater is an indicator of a promising

compound. And, percent inhibition values of 95 or greater have a high probability of

exhibiting activity in confirmation screening.

Consider a core molecule onto which reagents can be added to three locations, denoted

by A, B, and C. In this example, the desired compound space included two reagents

at position A, 10 reagents at position B, and 14 reagents at position C. In total, the

compound space contained 280 (= 2 × 10 × 14) possible chemical entities. The reagents

in this application can be though of as different levels of the factors (i.e. positions) and

are denoted by integers, 1, 2, etc.. In this example, 208 of the 280 chemical entities were

actually created without the assistance of the SELC algorithm. To show the algorithm’s

benefits to the combinatorial chemistry group, we applied the SELC to this problem under

the hypothetical constraint that resources were limited to creating only 25 compounds.

Based on prior scientific knowledge, some combinations of reagents for this experiment

were known to yield unfavorable percent inhibition values. These combinations of reagents

were used to focus the initial starting design, and were placed into the forbidden array prior

to the experiment. Tables 12 and 13 present the relative frequency of occurrence of the

individual levels of factors B and C, respectively in the forbidden array. Because we were

limited to creating 25 total compounds, we chose a 2× 2× 3 orthogonal array to initialize

the experiment. Using Tables 6 and 7, in conjunction with scientific guidance, the initial

orthogonal array included levels 8 and 9 of Factor B, and levels 3, 4, and 8 of Factor C.
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Figure 3: Example 3 : % of success in identifying global maximum for different methods
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Table 12: Factor B

Level 1 2 3 4 5 6 7 8 9 10
Relative Freq. (in %) 3 3 26 4 29 5 10 1 5 14

Table 13: Factor C

Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Relative Freq. (in %) 8 7 7 4 5 4 4 3 8 5 16 11 8 8

The results from the initial orthogonal array are presented in Table 14 (upper half).

Upon completing the initial orthogonal array, subsequent design points needed to be

chosen. Because not all levels of factors B and C were explored in the initial experiment,

the SELC algorithm was slightly modified to enable it to explore other parts of the chemistry

space. Specifically, if a factor was found to be significantly associated with an improvement

in response (at 5% level), the levels of that factor received probabilities proportional to their

individual association with the response. However, if a factor was not significantly associated

with improvement in response, then all levels of the factor received equal probability for

the weighted mutation. In this application, factor B was significantly associated with the

response after the 13th compound was created. The probabilities of mutation to the levels

of factor B are as follows:

p8 =
24 + 34 + 63 + 2 + 5 + 49 + 83 + 56 + 14 + 83

1016
× 0.75 +

1
10
× 0.25,

p9 =
0 + 12 + 21 + 9 + 0 + 5

1016
× 0.75 +

1
10
× 0.25,

pj =
1
10
× 0.25, for all j 6= 8, 9.

The denominator, 1016, is the sum of positive responses and the weights of 0.75 and 0.25

are arbitrary. The 10 levels of B account for the 1/10 in the above expression. As it was

desired to maximize the target efficacy, only positive values of the response were considered

in calculating pj ’s. The results from the subsequent runs of the experiment can be found

in Table 14 (bottom half). A fully sequential SELC method has been employed here.

All compounds run in the experiment were analyzed in a follow-up experiment where
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Table 14: Combinatorial Chemistry Example

# A B C y
1 1 8 8 24
2 1 9 8 -23
3 2 8 8 34
4 2 9 8 12
5 1 8 3 63 *
6 1 9 3 21
7 2 8 3 2
8 2 9 3 9
9 1 8 4 5

10 1 9 4 -16
11 2 8 4 49 *
12 2 9 4 5
13 2 8 10 83 *
14 2 3 4 65 *
15 2 1 4 107 *
16 2 2 10 49
17 2 8 2 56 *
18 1 6 10 19
19 2 2 4 60 *
20 2 10 10 39
21 1 8 10 14
22 2 6 8 90 *
23 2 6 10 64 *
24 2 1 1 -3
25 2 2 5 63 *

their IC50 values 1 were determined. Compounds that were judged to be acceptable by the

chemists are indicated with an asterisk in Table 14. Clearly, the SELC method succeeded

in identifying a rich set of promising compounds.

4.7 Summary and Conclusions

The problem of searching for an optimal design setting in a relatively large space is not easy.

The SELC method does this job efficiently. Relaxing the condition of orthogonality, GA is

flexible enough to explore more design points, which enhances the chance of finding the best

1IC50 assays (assays to determine the concentration of a drug-like compound resulting in a 50% reduction
in activity of a disease target) are a commonly used method for assessing drug efficacy in pharmaceutical
screening regimens. Typically, these assays are performed via serial dilutions of Dimethyl Sulfoxide (DMSO)
compound libraries to achieve dilutions of 2× 107 in 100% DMSO. Subsequent to the DMSO serial dilution,
assays are performed with each dilution to ascertain the IC50 of the compound of interest.
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setting in relatively fewer runs, particularly in the presence of interaction effects. Because

forbidden array can make use of prior knowledge to rule out unfavorable settings, the SELC

is particularly well-suited for scientific problems in which such knowledge is available.

The by-product of SELC algorithm, discussed in the Appendix is also of interest. If there

are many factors, the experimenter can get an insight by employing the Bayesian approach.

The posterior probabilities identify the important factors and interactions clearly. This

approach will result in a more comprehensive search of the model space. A system can

have a large number of factors, of which only a handful are important. A major use of

experimental design is screening, in which experimenters seek to identify significant effects

(both main effects and potentially interactions) from a large set of candidate effects. The

Bayesian variable selection helps in identifying the important factors and understanding the

impact of a large number of factors in relatively fewer runs.

The novel idea of forbidden array and weighted mutation enables SELC to find the

optimal solution more efficiently than GA. The improvement on performance, however,

depends on the nature of the response surface. If the response surface is very smooth,

any reasonable search algorithm should work satisfactorily. For an extremely complicated

surface, almost complete enumeration might be needed irrespective of the efficiency of the

search methods. For response surfaces whose ruggedness lies in between the two, SELC is

expected to perform well.
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APPENDIX A

DESIGN EFFICIENCY UNDER MODEL UNCERTAINTY

FOR NONREGULAR FRACTIONS OF GENERAL

FACTORIALS

A.1 Proof of Lemma 1

For 1 ≤ j ≤ m, let 1j be the sj × 1 vector with all elements unity, Ij be the identity matrix

of order sj , and Pj = [ pj(0), . . . , pj(sj − 1) ] be a matrix of order (sj − 1)× sj , such that

the sj × sj matrix

Q =




1T
sj

Pj


 (A.1)

satisfies

QT
j Qj = sjIsj (A.2)

The general mean will contribute a column 1(N) to the design matrix arising from A.

The main effect of Fj will cotribute an N × (sj − 1) submatrix

Zj =




pj(a1j)T

...

pj(aNj)T




(A.3)

to the design matrix arising from A.

Furthermore, if the 2fi FjFk(1 ≤ j < k ≤ m) is included in the model then it would

contribute an N × {(sj − 1)(sk − 1)} submatrix

Zjk =




pj(a1j)T ⊗ pk(a1k)T

...

pj(aNj)T ⊗ pk(aNk)T




(A.4)
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to the design matrix arising from A. Then following Mukerjee (1999) (see also Xu and Wu

(2001); Cheng and Ye (2004)),

X(h) = [1(N), Z1, . . . , Zm, . . . , Zjk, . . .], (A.5)

where 1(N) is the N × 1 vector with all elements unity, and any Zjk is included in X(h) if

and only if the 2fi FjFk belongs to h. In (A.5), 1(N) corresponds to the general mean, any

Zj corresponds to the main effect of Fj and any Zjk corresponds to the 2fi FjFk. With all

factors at two levels, one can take Pj = [−1 1] in view of (A.2), and then (A.5) agrees with

CDT. For general factorials, the specific choice of the matrices Pj , subject to (A.2), does

not affect our results.

We propose to find an expression for

∑

h∈H(w)

tr
[
{X(h)T X(h)}2

]

By (A.5), X(h)X(h)T = 1N1T
N +

∑m
j=1 ZjZ

T
j +

∑∗
h ZjkZ

T
jk where

∑∗
h denotes sum over

ordered pairs over jk such that FjFk ∈ h. Hence

{X(h)T X(h)}2 =
[
X(h)X(h)T

] [
X(h)X(h)T

]

=


1N1T

N +
m∑

j=1

ZjZ
T
j +

∗∑

h

ZjkZ
T
jk





1N1T

N +
m∑

j=1

ZjZ
T
j +

∗∑

h

ZjkZ
T
jk




= N1N1T
N +

N∑

u=1

1N1T
NZuZT

u +
∗∑

h

1N1T
NZuvZ

T
uv

+
m∑

j=1

ZjZ
T
j 1N1T

N +
m∑

j=1

m∑

u=1

ZjZ
T
j ZuZT

u +
m∑

j=1

∗∑

h

ZjZ
T
j ZuvZ

T
uv

+
∗∑

h

ZjkZ
T
jk1N1T

N +
∗∑

h

m∑

u=1

ZjkZ
T
jkZuZT

u +
∗∑

h

∗∑

h

ZjkZ
T
jkZuvZ

T
uv.

(A.6)

Since A is an orthogonal array of strength two, from (A.1), (A.2),(A.3) and (A.4), the

following are obvious :

1T
(N)Zu = 0 (1 ≤ u ≤ m), (A.7)

1T
(N)Zuv = 0 (1 ≤ u < v ≤ m), (A.8)
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ZT
j Zj =

N

sj

sj−1∑

α=0

pj(α)pj(α)T = NIsj−1(1 ≤ j ≤ m), (A.9)

ZT
j Zu =

N

sjsu

sj−1∑

α=0

∑
β = 0su−1pj(α)pu(β)T = 0 (1 ≤ j 6= u ≤ m). (A.10)

Hence (A.6) yields

[
X(h)X(h)T

] [
X(h)X(h)T

]
= NJNN +

m∑

j=1

ZjZ
T
j ZjZ

T
j +

m∑

j=1

∗∑

h

ZjZ
T
j ZuvZ

T
uv

+
∗∑

h

m∑

u=1

ZjkZ
T
jkZuZT

u +
∗∑

h

∗∑

h

ZjkZ
T
jkZuvZ

T
uv. (A.11)

Also note that

tr
[
{X(h)T X(h)}2

]
= tr

[
X(h)X(h)T X(h)X(h)T

]
, (A.12)

and that

∑

h∈H(w)

NJNN =




W

w


 NJNN ,

tr


 ∑

h∈H(w)

NJNN


 =




W

w


 N2, (A.13)

tr
[
ZjZ

T
j ZjZ

T
j

]
= tr

[
(ZT

j Zj)2
]

= tr
[
N2Isj−1

]
= N2(sj − 1),

tr


 ∑

h∈H(w)

m∑

j=1

ZjZ
T
j ZjZ

T
j


 =

∑

h∈H(w)

m∑

j=1

tr
[
(ZT

j Zj)2
]

= N2




W

w




m∑

j=1

(sj − 1). (A.14)

Also,

tr




m∑

j=1

∗∑

h

ZjZ
T
j ZuvZ

T
uv


 = tr




m∑

j=1

∗∑

h

ZuvZ
T
uvZjZ

T
j




= tr

[
m∑

u=1

∗∑

h

ZjkZ
T
jkZuZT

u

]
. (A.15)

By (A.11)− (A.15),

∑

h∈H(w)

tr
[
{X(h)T X(h)}2

]
= c + 2

∑

h∈H(w)

m∑

j=1

∗∑

h

tr
[
ZjZ

T
j ZuvZ

T
uv

]

+
∑

h∈H(w)

∗∑

h

∗∑

h

tr
[
ZjkZ

T
jkZuvZ

T
uv

]
, (A.16)
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where c = N2




W

w




{
1 +

∑m
j=1(sj − 1)

}
is same for all designs.

Now

∑

h∈H(w)

∗∑

h

∗∑

h

tr
[
ZjkZ

T
jkZuvZ

T
uv

]

=
∗∑

h

∗∑

h

∑

D:D3FjFk,FuFv

tr
[
ZjkZ

T
jkZuvZ

T
uv

] [ ∗∑

h

is sum over all the W 2fi’s
]

=
∗∑

h

∑

D:D3FjFk

tr
[
ZjkZ

T
jkZjkZ

T
jk

]
+

∗∑ ∗∑

jk 6=uv

∑

D:D3FjFk,FuFv

tr
[
ZjkZ

T
jkZuvZ

T
uv

]

=




W − 1

w − 1




∗∑
tr

[
ZjkZ

T
jkZjkZ

T
jk

]
+




W − 2

w − 2




∗∑ ∗∑

jk 6=uv

tr
[
ZjkZ

T
jkZuvZ

T
uv

]
(A.17)

Since A is an orthogonal array of strenght two, from (A.1), (A.2) and (A.4), we get

ZT
jkZjk =

N

sjsk

sj−1∑

α=0

sk−1∑

β=0

{pj(α)⊗ pk(β)} {pj(α)⊗ pk(β)}T

=
N

sjsk





sj−1∑

α=0

pj(α)pj(α)T



⊗





sk−1∑

β=0

pk(β)pk(β)T





=
N

sjsk

{
sjIsj−1

}
⊗ {skIsk−1}

= NI(sj−1)(sk−1). (A.18)

Hence

tr
[
ZjkZ

T
jkZjkZ

T
jk

]
= tr

[
N2I(sj−1)(sk−1)

]
= N2(sj − 1)(sk − 1).

Therefore



W − 1

w − 1




∗∑
tr

[
ZjkZ

T
jkZjkZ

T
jk

]

=




W − 1

w − 1


 N2

∗∑
(sj − 1)(sk − 1) = c1, (say), (A.19)

where c1 does not depend on the design.

Consider now the second term in (A.17). If jk 6= uv then the set {j, k, u, v} contains

either three or four distinct elements. Let ∆(3) be the set of all triplets (a, b, c) such that
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1 ≤ a < b < c ≤ m and ∆(4) be the set of all (a, b, c, d) such that 1 ≤ a < b < c < d ≤ m.

Then

∗∑ ∗∑

jk 6=uv

tr
[
ZjkZ

T
jkZuvZ

T
uv

]

=
∑

(α,β,γ)∈∆(3)

tr

[
ZαβZT

αβZβγZT
βγ + ZαβZT

αβZαγZT
αγ + ZαγZT

αγZβγZT
βγ

+ZαγZT
αγZαβZT

αβ + ZβγZT
βγZαβZT

αβ + ZβγZT
βγZαγZT

αγ

]

+
∑

(α,β,γ,δ)∈∆(4)

tr

[
ZαβZT

αβZγδZ
T
γδ + ZαγZT

αγZβδZ
T
βδ + ZαδZ

T
αδZβγZT

βγ

+ZβγZT
βγZαδZ

T
αδ + ZβδZ

T
βδZαγZT

αγ + ZγδZ
T
γδZαβZT

αβ

]

= 2
∑

(α,β,γ)∈∆(3)

tr

[
ZαβZT

αβZβγZT
βγ + ZαβZT

αβZαγZT
αγ + ZαγZT

αγZβγZT
βγ

]

+2
∑

(α,β,γ,δ)∈∆(4)

tr

[
ZαβZT

αβZγδZ
T
γδ + ZαγZT

αγZβδZ
T
βδ + ZαδZ

T
αδZβγZT

βγ

]

(A.20)

Now for (α, β, γ) ∈ ∆(3), by (A.4),

ZT
αβZβγ =

N∑

u=1

[
pα(auα)⊗ pβ(auβ)

][
pβ(auβ)⊗ pγ(auγ)

]T

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

n
(α,β,γ)
ijk

[
pα(i)⊗ pβ(j)

][
pβ(j)⊗ pγ(k)

]T

,

where n
(α,β,γ)
ijk is the number of times the ordered triplet (i, j, k) occurs as a row in the N×3

subarray of A given by the αth, βth and γth columns. Therefore,

tr

[
ZαβZT

αβZβγZT
βγ

]

= tr

[
(ZT

αβZβγ)(ZT
βγZαβ)

]

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv tr

(
[pα(i)⊗ pβ(j)][pβ(j)⊗ pγ(k)]T

[pβ(u)⊗ pγ(v)][pα(r)⊗ pβ(u)]T
)

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv (sβδju − 1)(sγδkv − 1)
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tr

(
[pα(i)⊗ pβ(j)][pγ(r)⊗ pβ(u)]T

)

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv (sβδju − 1)(sγδkv − 1)

tr

(
[pγ(r)⊗ pβ(u)]T [pα(i)⊗ pβ(j)]

)

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv (sβδju − 1)2(sγδkv − 1)(sαδir − 1)

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv (s2
βδju − 2sβδju + 1)

(sαsγδirδkv − sαδir − sγδkv + 1)

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv (sαs2
βsγδirδjuδkv − 2sαsβsγδirδjuδkv

+sαsγδirδkv − sαs2
βδirδju + 2sαsβδirδju − sαδir − s2

βsγδjuδkv + 2sβsγδjuδkv

−sγδkv + s2
βδju − 2sβδju + 1)

= sαs2
βsγ

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

{
n

(α,β,γ)
ijk

}2

− 2sαsβsγ

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

{
n

(α,β,γ)
ijk

}2

+sαsγ
N2

sαsγ
+ 2sαsβ

N2

sαsβ
− sα

N2

sα
− sαs2

β

N2

sαs2
β

−s2
βsγ

N2

s2
βsγ

+ 2sβsγ
N2

sβsγ
− sγ

N2

sγ
+ s2

β

N2

s2
β

+ 2sβ
N2

sβ
+ N2

= (sβ − 2)φ(αβγ) + N2 −N2sβ + 2N2 −N2 −N2sβ + 2N2 −N2 + N2sβ

−2N2 + N2

= (sβ − 2)φ(αβγ) + 2N2 −N2sβ

= (sβ − 2)
{

φ(αβγ)−N2
}

,

where

φ(αβγ) = sαsβsγ

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

{
n

(α,β,γ)
ijk

}2

.

Similarly

tr

[
ZαβZT

αβZαγZT
αγ

]
= (sα − 2)

{
φ(αβγ)−N2

}
,

tr

[
ZαγZT

αγZβγZT
βγ

]
= (sγ − 2)

{
φ(αβγ)−N2

}
. (A.21)
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Hence, the first term of (A.20) equals

2
∑

(α,β,γ)∈∆(3)

(
sα + sβ + sγ − 6

){
φ(αβγ)−N2

}
.

Consider now the second term in (A.20). Let n
(α,β,γ,δ)
ijkl be defined in the same way as

n
(α,β,γ)
ijk . For (α, β, γ, δ) ∈ ∆(4),

ZT
αβZγδ =

N∑

u=1

[
pα(auα)⊗ pβ(auβ)

][
pγ(auγ)⊗ pδ(auδ)

]T

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

n
(α,β,γ,δ)
ijkl

[
pα(i)⊗ pβ(j)

][
pγ(k)T ⊗ pδ(al)T

]
.

This gives

tr

[
ZαβZT

αβZγδZ
T
γδ

]

= tr

[
(ZT

αβZγδ)(ZT
αβZγδ)

T
]

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

sδ−1∑

y=0

n
(α,β,γ,δ)
ijkl n(α,β,γ,δ)

ruvy

(sαδir − 1)(sβδju − 1)(sγδkv − 1)(sδδly − 1)

= sαsβsγsδ

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2

−
[
sβsγsδ

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

sα−1∑

r=0

n
(α,β,γ,δ)
ijkl n

(α,β,γ,δ)
rjkl

+ three other similar terms
]

+
[
sαsβ

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

sγ−1∑

v=0

sδ−1∑

y=0

n
(α,β,γ,δ)
ijkl n

(α,β,γ,δ)
ijvy

+ five other similar terms
]

−
[
sα

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

sβ−1∑

u=0

sγ−1∑

v=0

sδ−1∑

y=0

n
(α,β,γ,δ)
ijkl n

(α,β,γ,δ)
iuvy

+ three other similar terms
]

+ N2

= φ(αβγδ)−
[
sβsγsδ

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

{n(β,γ,δ)
jkl }2 + three other similar terms

]

+
[
sαsβ

sα−1∑

i=0

sβ−1∑

j=0

(
N

sαsβ

) (
N

sαsβ

)
+ five other similar terms

]
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−
[
sα

sα−1∑

i=0

+
(

N

sα

) (
N

sα

)
+ three other similar terms

]
+ N2

= φ(αβγδ)−
[
φ(βγδ) + φ(αβγ) + φ(αγδ) + φ(αβδ)

]
+ 6N2 − 4N2 + N2

= φ(αβγδ)−
[
φ(βγδ) + φ(αβγ) + φ(αγδ) + φ(αβδ)

]
+ 3N2

Hence the second term in (A.20) equals

6
∑

(α,β,γ,δ)∈∆(4)

[
φ(αβγδ)− φ(βγδ)− φ(αβγ)− φ(αγδ)− φ(αβδ) + 3N2

]

= 6
∑

(α,β,γ,δ)∈∆(4)

φ(αβγδ) + 18N2




m

4


− 6(m− 3)

∑

(α,β,γ)∈∆(3)

φ(αβγ).

Summarizing the above,

∗∑ ∗∑

jk 6=uv

tr

[
ZjkZ

T
jkZuvZ

T
uv

]

= 2
∑

(α,β,γ)∈∆(3)

(sα + sβ + sγ − 6)φ(αβγ)− 6(m− 3)
∑

(α,β,γ)∈∆(3)

φ(αβγ)

+6
∑

(α,β,γ,δ)∈∆(4)

φ(αβγδ) + c∗, (A.22)

where c∗ is a constant that does not depend on the origin.

We next consider the second term in the RHS of (A.16).

∑

h∈H(w)

m∑

j=1

∗∑

h

tr
[
ZjZ

T
j ZuvZ

T
uv

]

=
∗∑ m∑

j=1

∑

D:D3FuFv

tr
[
ZjZ

T
j ZuvZ

T
uv

]

=




W − 1

w − 1




∗∑ m∑

j=1

tr
[
ZjZ

T
j ZuvZ

T
uv

]

=




W − 1

w − 1




[ ∑ ∑

1≤α<β≤m

{
tr

(
ZαZT

α ZαβZT
αβ

)
+ tr

(
ZβZT

β ZαβZT
αβ

) }

+
∑

(α,β,γ)∈∆(3)

{
tr

(
ZαZT

α ZβγZT
βγ

)
+ tr

(
ZβZT

β ZαγZT
αγ

)

+tr
(
ZγZT

γ ZαβZT
αβ

)
+

}]
. (A.23)
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Now for 1 ≤ α < β ≤ m, by (A.3) and (A.4),

ZT
α Zαβ =

N∑

u=1

pα(auα)
{
pα(auα)T ⊗ pβ(auβ)T

}
= 0.

Similarly, ZT
β Zαβ = 0. Also, for (α, β, γ) ∈ ∆(3), we have

ZT
α Zβγ =

N∑

u=1

pα(auα)
{
pβ(auβ)T ⊗ pγ(auγ)T

}

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

n
(α,β,γ)
ijk pα(i)

{
pβ(j)⊗ pγ(k)

}T
.

This implies

tr

[
ZαZT

α ZβγZT
βγ

]

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv tr

[
pα(i)

{
pβ(j)⊗ pγ(k)

}T

{
pβ(u)⊗ pγ(v)

}
pα(r)T

]

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv (sαδir − 1)(sβδju − 1)(sγδkv − 1)

=
sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sα−1∑

r=0

sβ−1∑

u=0

sγ−1∑

v=0

n
(α,β,γ)
ijk n(α,β,γ)

ruv

[
sαsβsγδirδjuδkv

−
{
sαsβδirδju + two similar terms

}
−

{
sαδir + two similar terms

}
− 1

]

= φ(αβγ) + terms do not depend on the design.

Similar conditions apply to tr

[
ZβZT

β ZαγZT
αγ

]
etc. Hence the RHS of (A.23) equals

3




W − 1

w − 1




∑

(α,β,γ)∈∆(3)

φ(αβγ) + terms that do not depend on the design . (A.24)

By (A.16), (A.17), (A.22), (A.23) and (A.24)

∑

h∈H(w)

tr

{(
X(h)T X(h)

)2
}

= C∗
0 + 6




W − 1

w − 1




∑

(α,β,γ)∈∆(3)

φ(αβγ)
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+




W − 2

w − 2




[
2

∑

(α,β,γ)∈∆(3)

φ(α, β, γ)(sα + sβ + sγ − 6)

−6(m− 3)
∑

(α,β,γ)∈∆(3)

φ(αβγ) + 6
∑

(α,β,γ,δ)∈∆(4)

φ(α, β, γ, δ)
]

= C∗
0 +




W − 1

w − 1




[
6

∑

(α,β,γ)∈∆(3)

φ(αβγ) +

w − 1
W − 1

{
2

∑

(α,β,γ)∈∆(3)

φ(α, β, γ)(sα + sβ + sγ − 6)

−6(m− 3)
∑

(α,β,γ)∈∆(3)

φ(αβγ) + 6
∑

(α,β,γ,δ)∈∆(4)

φ(αβγδ)
}]

= C∗
0 +




W − 1

w − 1




[ ∑

(α,β,γ)∈∆(3)

ξ(α, β, γ)φ(αβγ) +
6(w − 1)
W − 1

∑

(α,β,γ,δ)∈∆(4)

φ(αβγδ)
]
,

where C∗
0 does not depend on the design and

ξ(α, β, γ) = 6 +
w − 1
W − 1

{
2(sα + sβ + sγ − 6)− 6(m− 3)

}

= 6 +
2(w − 1)
W − 1

{
sα + sβ + sγ − 3m + 3)

}

Hence the objective function can be written as

E∗
w =

∑

(α,β,γ)∈∆(3)

ξ(α, β, γ)φ(αβγ) +
6(w − 1)
W − 1

∑

(α,β,γ,δ)∈∆(4)

φ(αβγδ), (A.25)

where

ξ(α, β, γ) = 6 +
2(w − 1)
W − 1

{
sα + sβ + sγ − 3m + 3)

}
. (A.26)

Special Case : s1 = s2 = . . . = sm = s

ξ(α, β, γ) = 6− 6(w − 1)
W − 1

(m− s− 1) = ξ0 (say)

Also,

φ(αβγ) = s3
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2
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φ(αβγδ) = s4
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2

Hence, then

E∗
w =

∑

(α,β,γ)∈∆(3)

ξ0s
3

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2

+

6(w − 1)
W − 1

∑

(α,β,γ,δ)∈∆(4)

s4
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2

=
[
6− 6(w − 1)

W − 1
(m− s− 1)

]
s3T3 +

6(w − 1)
W − 1

s4T4 (A.27)

where

T3 =
∑

(α,β,γ)∈∆(3)

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2

(A.28)

T4 =
∑

(α,β,γ,δ)∈∆(4)

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2

In particular, consider s1 = s2 = . . . = sm = s = 2.

Then

E∗
w =

[
6− 6(w − 1)

W − 1
(m− s− 1)

]
8T3 +

6(w − 1)
W − 1

16T4

= 48
[
1− (w − 1)

W − 1
(m− s− 1)

]
T3 +

96(w − 1)
W − 1

T4, (A.29)

where T3 and T4 are given by (A.28).

Do (A.28) and (A.29) agree with Cheng, Deng and Tang (2002)?

In their notation, Bs(d) = N−2 ∑
S:|S|=s

[ ∑N
i=1

∏
j∈S xij(d)

]2
where xij(d) is the (i, j)th

entry of X(d). Since we have an OA of strength two, in our case we have
∑N

i=1

∏
j∈S xij(d) =

0 whenever |S| = 2. Hence B2(d) = 0 in our situation.

We now note that

n
(α,β,γ)
001 = (n(α,β,γ)

001 + n
(α,β,γ)
000 )− n

(α,β,γ)
000 = n

(α,β)
00 − n

(α,β,γ)
000 =

N

4
− n

(α,β,γ)
000 ,
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n
(α,β,γ)
110 = (n(α,β,γ)

110 + n
(α,β,γ)
010 )− n

(α,β,γ)
010 = n

(α,β)
10 − n

(α,β,γ)
010 =

N

4
−

(
N

4
− n

(α,β,γ)
000

)

= n
(α,β,γ)
000 ,

n
(α,β,γ)
111 = (n(α,β,γ)

111 + n
(α,β,γ)
110 )− n

(α,β,γ)
110 = n

(α,β)
11 − n

(α,β,γ)
110 =

N

4
− n

(α,β,γ)
000 .

Next,

B3(d) = N−2
∑

S:|S|=3

[ N∑

i=1

∏

j∈S

xij(d)
]2

= N−2
∑

(α,β,γ)∈∆(3)

[ N∑

i=1

xiαxiβxiγ

]2

= N−2
∑

(α,β,γ)∈∆(3)

[
n

(α,β,γ)
000 − n

(α,β,γ)
001 − n

(α,β,γ)
010 − n

(α,β,γ)
100 + n

(α,β,γ)
110

+n
(α,β,γ)
101 + n

(α,β,γ)
011 − n

(α,β,γ)
111

]2

= N−2
∑

(α,β,γ)∈∆(3)

[
n

(α,β,γ)
000 − 3

(
N

4
− n

(α,β,γ)
000

)
+ 3n

(α,β,γ)
000 −

(
N

4
− n

(α,β,γ)
000

) ]2

= N−2
∑

(α,β,γ)∈∆(3)

[
8n

(α,β,γ)
000 −N

]2

= 64N−2
∑

(α,β,γ)∈∆(3)

[
n

(α,β,γ)
000 − N

8

]2

.

Again,

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk − N

8

}2

=
(

n
(α,β,γ)
000 − N

8

)2

+
{(

n
(α,β,γ)
001 − N

8

)2

+ two similar terms
}

+
{(

n
(α,β,γ)
110 − N

8

)2

+ two similar terms
}

+
(

n
(α,β,γ)
111 − N

8

)2

=
(

n
(α,β,γ)
000 − N

8

)2

+ 3
(

N

8
− n

(α,β,γ)
000

)2

+ 3
(

n
(α,β,γ)
000 − N

8

)2

+
(

N

8
− n

(α,β,γ)
000

)2

= 8
(

n
(α,β,γ)
000 − N

8

)2

.

Therefore

B3(d) =
8

N2

∑

(α,β,γ)∈∆(3)

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk − N

8

}2
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=
8

N2

∑

(α,β,γ)∈∆(3)

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)2
ijk − N

8
n

(α,β,γ)
ijk +

N2

64

}

=
8

N2

∑

(α,β,γ)∈∆(3)

{ s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

n
(α,β,γ)2
ijk − N2

8

}

=
8

N2
T3 −




m

3


 . (A.30)

Also

B4(d) = N−2
∑

S:|S|=4

[ N∑

i=1

∏

j∈S

xij(d)
]2

= N−2
∑

(α,β,γ,δ)∈∆(4)

[ N∑

i=1

xiαxiβxiγxiδ

]2

.

For any (α, β, γ, δ) ∈ ∆(4),
∑N

i=1 xiαxiβxiγxiδ =
∑

i

∑
j

∑
k

∑
l n

(α,β,γ,δ)
ijkl (−1)i+j+k+l =

nT ξ where n is a 16 × 1 vector with elements n
(α,β,γ,δ)
ijkl arranged lexicographically, and

ξT = (1− 1)⊗ (1− 1)⊗ (1− 1)⊗ (1− 1). Hence (
∑N

i=1 xiαxiβxiγxiδ)
2 = (nT ξ)2 = nT ξξT n.

But

(1− 1)T ⊗ (1− 1) =




1 −1

−1 1


 = 2I − J

gives

ξξT = (2I − J)⊗ (2I − J)⊗ (2I − J)⊗ (2I − J)

=
[
16I ⊗ I ⊗ I ⊗ I − 8

{
I ⊗ I ⊗ I ⊗ J + three similar terms

}

+4
{
I ⊗ I ⊗ J ⊗ J + five similar terms

}
− 2

{
I ⊗ J ⊗ J ⊗ J

+ three similar terms
}

+ J ⊗ J ⊗ J ⊗ J

]
,

and recall that the elements of (I ⊗ I ⊗ I ⊗ 1T )n are n
(α,β,γ)
ijk . Then

nT (I ⊗ I ⊗ I ⊗ I)n =
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2

,

nT (I ⊗ I ⊗ I ⊗ J)n = nT (I ⊗ I ⊗ I ⊗ 1)(I ⊗ I ⊗ I ⊗ 1T )n

=
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2

,
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nT (I ⊗ I ⊗ J ⊗ J)n = nT (I ⊗ I ⊗ 1⊗ 1)(I ⊗ I ⊗ 1T ⊗ 1T )n

=
s−1∑

i=0

s−1∑

j=0

{
n

(α,β)
ij

}2

=
s−1∑

i=0

s−1∑

j=0

(
N

4

)2

=
N2

4
,

nT (I ⊗ J ⊗ J ⊗ J)n =
s−1∑

i=0

{
n

(α)
i

}2

=
s−1∑

i=0

(
N

2

)2

=
N2

2
,

nT (J ⊗ J ⊗ J ⊗ J)n = N2.

Thus

( N∑

i=1

xiαxiβxiγxiδ

)2
= 16

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2

−8
[ s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2
+

s−1∑

i=0

s−1∑

j=0

s−1∑

l=0

{
n

(α,β,δ)
ijl

}2

+
s−1∑

i=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,γ,δ)
ikl

}2
+

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(β,γ,δ)
jkl

}2
]

+ 4.6.
N2

4

−2.4.
N2

2
+ N2

= 16
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2 − 8
[ s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2

+
s−1∑

i=0

s−1∑

j=0

s−1∑

l=0

{
n

(α,β,δ)
ijl

}2
+

s−1∑

i=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,γ,δ)
ikl

}2

+
s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(β,γ,δ)
jkl

}2
]

+ 3N2.

Hence

B4(d) = N−2
[
16T4 − 8

∑

(α,β,γ,δ)∈∆(4)

( s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2
+

s−1∑

i=0

s−1∑

j=0

s−1∑

l=0

{
n

(α,β,δ)
ijl

}2

+
s−1∑

i=0

s−1∑

k=0

s−1∑

l=0

{
n

(α,γ,δ)
ikl

}2
+

s−1∑

j=0

s−1∑

k=0

s−1∑

l=0

{
n

(β,γ,δ)
jkl

}2)
+ 3N2




m

4




]

81



= N−2
[
16T4 − 8(m− 3)T3

]
+ 3




m

4


 . (A.31)

Alternative derivation of (A.30) using method for obtaining (A.31)

∑N
i=1 xiαxiβxiγ = nT ξ where n is a 8× 1 vector with elements n

(α,β,γ)
ijk arranged lexico-

graphically, and ξT = (1− 1)⊗ (1− 1)⊗ (1− 1).

[ N∑

i=1

xiαxiβxiγ

]2

= (nT ξ)2

= nT ξξT n

= nT
[
(2I − J)⊗ (2I − J)⊗ (2I − J)

]
n

= nT
[
8I ⊗ I ⊗ I −

{
4I ⊗ I ⊗ J + . . .

}
+

{
2I ⊗ J ⊗ J

+ . . .
}
− J ⊗ J ⊗ J

]
n

= 8
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2

− 4.3.4.
N2

16
+ 2.3.2.

N2

4
−N2

= 8
s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

{
n

(α,β,γ)
ijk

}2

−N2,

which gives

B3(d) = N−2
∑

S:|S|=3

[ N∑

i=1

∏

j∈S

xij(d)
]2

= N−2
∑

(α,β,γ)∈∆(3)

[ N∑

i=1

xiαxiβxiγ

]2

= N−2
[
8

∑

(α,β,γ)∈∆(3)

s−1∑

i=0

s−1∑

j=0

s−1∑

k=0

n
(α,β,γ)2
ijk −N2




m

3




]

=
8

N2
T3 −




m

3


 ,

which agrees with (A.30).
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Following Proposition 1 of Cheng et al. (2002), their objective function is

6
w

W
B3(d) + 6

w

W

(w − 1)
(W − 1)

B4(d)

= 6
w

W

[
8

N2
T3 −




m

3




]
+ 6

w

W

(w − 1)
(W − 1)

[
16
N2

T4 − 8(m− 3)
N2

T3 + 3




m

4




]

= Constant free from design +
w

W

6
N2

[
8T3 +

w − 1
W − 1

{
16T4 − 8(m− 3)T3

}]
.

Effectively, this boils down to 8T3 + w−1
W−1

{
16T4−8(m−3)T3

}
= 8

[
1− w−1

W−1(m−3)
]
T3 +

16 w−1
W−1T4, which is proportional to (A.29).

An expression for B3 and B4

Consider a typical member of Ω3, say 11100 . . . 0. Then

V (11100 . . . 0) =
(

Is1 −
1
s1

Js1

)
⊗

(
Is2 −

1
s2

Js2

)
⊗

(
Is3 −

1
s3

Js3

)
⊗

(
1
s4

Js4

)
⊗ . . .

⊗
(

1
sm

Jsm

)
.

Then

nT V (11100 . . . 0)n =
1
v
nT

[(
s1Is1 − Js1

)
⊗

(
s2Is2 − Js2

)
⊗

(
s3Is3 − Js3

)
⊗ Js4 ⊗ . . .

⊗Jsm

]
n

=
1
v
nT

[{
Is1 ⊗ Is2 ⊗ Is3 ⊗ 1s4 ⊗ . . .⊗ 1sm

}

{
(s1Is1 − Js1)⊗ (s2Is2 − Js2)⊗ (s3Is3 − Js3)

}

{
Is1 ⊗ Is2 ⊗ Is3 ⊗ 1T

s4
⊗ . . .⊗ 1T

sm

}]
n

=
1
v
n(123)T

[(
s1Is1 − Js1

)
⊗

(
s2Is2 − Js2

)
⊗

(
s3Is3 − Js3

)]
n(123)

=
1
v
n(123)T

[
s1s2s3Is1 ⊗ Is2 ⊗ Is3 −

{
s1s2Is1 ⊗ Is2 ⊗ Js3 + . . .

}

+
{
s1Is1 ⊗ Js2 ⊗ Js3 + . . .

}
− Js1 ⊗ Js2 ⊗ Js3

]
n(123).

Note, n(123) =
[{

Is1 ⊗ Is2 ⊗ Is3 ⊗ 1T
s4
⊗ . . .⊗ 1T

sm

}]
n is a vector whose elements are n

(1,2,3)
ijk

arranged lexicographically. Now,
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n(123)T (Is1 ⊗ Is2 ⊗ Is3) n(123) =
s1−1∑

i=0

s2−1∑

j=0

s3−1∑

k=0

{
n

(1,2,3)
ijk

}2

.

Similarly,

n(123)T (Is1 ⊗ Is2 ⊗ Js3) n(123) = n(123)T (Is1 ⊗ Is2 ⊗ 1s3)
(
Is1 ⊗ Is2 ⊗ 1T

s3

)
n(123)

= n(12)T n(12)
s1−1∑

i=0

s2−1∑

j=0

{
n

(1,2)
ij

}2

,

which does not depend on the design as n
(1,2)
ij = N

s1s2
∀i, j. Similar considerations apply to

other terms. Hence

nT V (1110 . . . 0)n =
1
v

s1−1∑

i=0

s2−1∑

j=0

s3−1∑

k=0

{
n

(1,2,3)
ijk

}2

s1s2s3 + constant.

Hence

B3 =
∑

x∈Ω3

nT V (x)n

=
1
v

∑

(α,β,γ)∈∆(3)

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

{
n

(α,β,γ)
ijk

}2

sαsβsγ

=
1
v

∑
α

∑

β

∑
γ

φ(αβγ). (A.32)

Similarly,

nT V (111100 . . . 0)n

=
1
v
nT

[(
s1Is1 − Js1

)
⊗

(
s2Is2 − Js2

)
⊗

(
s3Is3 − Js3

)
⊗

(
s4Is4 − Js4

)
⊗ Js5 ⊗

. . .⊗ Jsm

]
n

=
1
v
n(1234)T

[(
s1Is1 − Js1

)
⊗

(
s2Is2 − Js2

)
⊗

(
s3Is3 − Js3

)
⊗

(
s4Is4 − Js4

)]
n(1234)

=
1
v
n(123)T

[
s1s2s3s4Is1 ⊗ Is2 ⊗ Is3 ⊗ Is4 −

{
s1s2s3Is1 ⊗ Is2 ⊗ Is3 ⊗ Js4 + . . .

}

+
{
s1s2Is1 ⊗ Is2 ⊗ Js3 ⊗ Js4 + . . .

}
−

{
s1Is1 ⊗ Js2 ⊗ Js3 ⊗ Js4 + . . .

}

−Js1 ⊗ Js2 ⊗ Js3 ⊗ Js4

]
n(1234)

=
1
v

[
s1s2s3s4

s1−1∑

i=0

s2−1∑

j=0

s3−1∑

k=0

s4−1∑

l=0

{
n

(1,2,3,4)
ijkl

}2

−
(

s1s2s3

s1−1∑

i=0

s2−1∑

j=0

s3−1∑

k=0

{
n

(1,2,3)
ijk

}2

+ . . .

)]
+ constant

=
1
v

[
φ(1, 2, 3, 4)−

{
φ(1, 2, 3) + φ(1, 2, 4) + φ(1, 3, 4) + φ(2, 3, 4)

}]
+ constant.
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Hence

B4 =
∑

x∈Ω4

nT V (x)n

=
1
v

∑

(α,β,γ,δ)∈∆(4)

[
φ(1, 2, 3, 4)−

{
φ(1, 2, 3) + φ(1, 2, 4) + φ(1, 3, 4) + φ(2, 3, 4)

}]

+constant

=
1
v

[ ∑

(α,β,γ,δ)∈∆(4)

φ(α, β, γ, δ)− (m− 3)
∑

(α,β,γ)∈∆(3)

φ(αβγ)
]

+ constant.

E∗
w for symmetric factorials

In particular, if s1 = s2 = . . . = sm = s, then

B3 =
s3

v

∑

(α,β,γ)∈∆(3)

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

{
n

(α,β,γ)
ijk

}2

=
s3

v
T3,

and

B4 =
s3

v

[
S4

∑

(α,β,γ,δ)∈∆(4)

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

sδ−1∑

l=0

{
n

(α,β,γ,δ)
ijkl

}2

−

(m− 3)s3
∑

(α,β,γ)∈∆(3)

sα−1∑

i=0

sβ−1∑

j=0

sγ−1∑

k=0

{
n

(α,β,γ)
ijk

}2]

=
1
v

[
s4T4 − (m− 3)s3T3

]
.

Hence, solving we get,

T3 =
v

s3
B3,

T4 =
v

s4

[
B4 + (m− 3)B3

]
.

Hence for symmetrical factorials, the objective function in (A.27) becomes

E∗
w =

[
6− 6(w − 1)

W − 1
(m− s− 1)

]
s3 v

s3
B3(d) +

6(w − 1)
W − 1

s4 v

s4

[
B4(d) + (m− 3)B3(d)

]

= 6v

[{
1 +

w − 1
W − 1

(s− 2)
}
B3(d) +

w − 1
W − 1

B4(d)
]
. (A.33)

In particular, if s = 2, then the above is proportional to B3(d)+ w−1
W−1B4(d), which agrees

with Cheng et al. (2002).
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A.2 Proof of Theorem 1

For any (α, β, γ) ∈ ∆(3) define B(αβγ) = nT V (x)n where x = x1 . . . xm has 1 in αth,

βth and γth positions and 0 elsewhere. Also for any (α, β, γ, δ) ∈ ∆(4) define B(αβγδ) =

nT V (x)n where x = x1 . . . xm has 1 in αth, βth, γth and δth positions and 0 elsewhere.

B(αβγ) measures the departure of the subarray of A given by the αth, βth and γth columns

from being an OA of strength three. Similarly B(αβγδ) can be interpreted. We have already

seen that

B(αβγ) =
1
v
φ(α, β, γ),

B(αβγδ) =
1
v

[
φ(αβγδ)−

{
φ(αβγ) + φ(αβδ)φ(αγδ)φ(βγδ)

}]
.

Hence,

∑

(α,β,γ,δ)∈∆(4)

φ(αβγδ) =
∑

(α,β,γ,δ)∈∆(4)

[
vB(αβγδ) + φ(αβγ) + φ(αβδ)φ(αγδ)φ(βγδ)

]

= vB4(d) + (m− 3)
∑

(α,β,γ)∈∆(3)

φ(α, β, γ)

= vB4(d) + (m− 3)vB3(d). (A.34)

Therefore, by (A.25) and (A.26)

∆(w) =
∑

(α,β,γ)∈∆(3)

vξ(α, β, γ)B(αβγ) +
6(w − 1)
W − 1

[
vB4(d) + (m− 3)vB3(d)

]

= v

[ ∑

(α,β,γ)∈∆(3)

{
6 +

2(w − 1)
W − 1

(sα + sβ + sγ − 3m + 3)
}
B(αβγ)

+
6(w − 1)
W − 1

{
vB4(d) + (m− 3)vB3(d)

}]

= v

[ ∑

(α,β,γ)∈∆(3)

{
6 +

2(w − 1)
W − 1

(3− 3m)
}
B(αβγ)

+
2(w − 1)
W − 1

∑

(α,β,γ)∈∆(3)

(sα + sβ + sγ)B(αβγ)

+
6(w − 1)
W − 1

{
B4(d) + (m− 3)B3(d)

}]

= v

[{
6 +

2(w − 1)
W − 1

(3− 3m)
}
B3(d) +

2(w − 1)
W − 1

∑

(α,β,γ)∈∆(3)

(sα + sβ + sγ)B(αβγ)

+
6(w − 1)
W − 1

{
B4(d) + (m− 3)B3(d)

}]
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= 6v

[{
1− 2(w − 1)

W − 1

}
B3(d) +

(w − 1)
W − 1

B4(d)

+
(w − 1)

3(W − 1)

∑

(α,β,γ)∈∆(3)

(sα + sβ + sγ)B(αβγ)
]
. (A.35)

If s1 = s2 = . . . = sm = s, then (A.35) becomes

6v

[{
1− 2(w − 1)

W − 1

}
B3(d) +

(w − 1)
W − 1

B4(d) +
(w − 1)s
(W − 1)

B3

]

= 6v

[{
1 +

(w − 1)
W − 1

(s− 2)
}
B3(d) +

(w − 1)
W − 1

B4(d)
]
,

which agrees with (A.33).
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APPENDIX B

BAYESIAN FACTOR SCREENING AND RESPONSE

SURFACE DESIGNS

B.1 Derivation of Hellinger Distance

We now sketch the derivation of the Hellinger distance between predictive densities. We

refer to the model and priors defined in Section 2 to save space.

Let Y be the n×1 vector of independent observations from the linear model in (20). The

model matrix, Xi is an n× ri matrix with the first column corresponding to the intercept

and the remaining ri − 1 columns corresponding to the factorial effects in model Mi. The

prior specification for the coefficients vector for model Mi is π(βi|σ2) ∼ MV N(0, σ2Γi),

where Γ is defined in (32). Therefore, the predictive distribution of Y is normal with mean

0 and variance σ2Σi, where Σi is defined in (34).

Following the outline in Meyer, Steinberg and Box (1996), we proceed conditionally on

σ2 and integrate out σ2 in the last step. Let fi and fj be the predictive densities of models

Mi and Mj respectively. The Hellinger distance between the predictive densities is

H(fi, fj) = 2− 2
∫

(fi fj)1/2dY.

We now need to integrate (fi fj)1/2 over the data to compute the Hellinger distance.

∫
(fi fj)1/2dY =

∫ exp{−1
2(Y ′Σ−1

i
2σ2 Y + Y ′Σ

−1
j

2σ2 Y )}
(2 π)n/2|σ2Σi|1/4|σ2Σj |1/4

dY

=
∫ exp{−1

2Y ′( (Σ−1
i

2σ2 +
Σ−1

j

2σ2 )Y }
(2 π)n/2|σ2Σi|1/4|σ2Σj |1/4

dY

=

∣∣∣∣∣
(

Σ−1
i

2σ2 +
Σ−1

j

2σ2

)−1
∣∣∣∣∣
1/2

|σ2Σi|1/4|σ2Σj |1/4

∫ exp{−1
2Y ′( (Σ−1

i
2σ2 +

Σ−1
j

2σ2 )Y }

(2 π)n/2

∣∣∣∣∣
(

Σ−1
i

2σ2 +
Σ−1

j

2σ2

)−1
∣∣∣∣∣
1/2

dY
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=

∣∣∣∣∣
(

Σ−1
i

2σ2 +
Σ−1

j

2σ2

)−1
∣∣∣∣∣
1/2

|σ2Σi|1/4|σ2Σj |1/4

=
1

|σ2Σi|1/4|σ2Σj |1/4

∣∣∣∣
Σ−1

i
2σ2 +

Σ−1
j

2σ2

∣∣∣∣
1/2

=
1

|σ2Σi|1/4

∣∣∣∣1
2

(
Σ−1

i
σ2 +

Σ−1
j

σ2

)∣∣∣∣
1/2

|σ2Σj |1/4

=
1

∣∣∣1
2

(
Σ−1/2

i Σ1/2
j + Σ1/2

i Σ−1/2
j

)∣∣∣
1/2

Lastly, we need to integrate over σ2. Notice that σ2 cancels out from the derivation of

the Hellinger distance. Therefore, selecting any proper prior distribution (say an inverted

gamma distribution) will simply result in the Hellinger distance in (31). If an improper prior

is selected, then the Hellinger distance may not be bounded above by 2. Substituting the

expression in the last step for
∫
(fi fj)1/2dY in the Hellinger distance, we get the expression

in (33).

B.2 Expected Number of Active Effects

Here, the expected number of active effects in a model is derived for a general form of prior

(24). There are q factors and
(q
2

)
two-way interactions being considered in the model. Let p

be the probability that a specific main effect is active. The probability pAB,i that a specific

interaction (say AB) is active, given i main effect parents are active is

pAB,i =





c1p if i = 0

c2p if i = 1

c3p if i = 2.

(B.1)

The probability pA2,A that a specific quadratic effect (say A2) is active, given the main

effect A is active is

pA2,A =





d1p if δA = 0

d2p if δA = 1.
(B.2)
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Conditional on f active main effects, the expected number of active effects (main effects

plus two-way interactions) is

f +

(
f

2

)
c3p + f(q − f)c2p +

(
q − f

2

)
c1p + fd2p + (q − f)d1p (B.3)

This is because
(f
2

)
interactions will have two active parents, f(q− f) interactions will have

one active parent, and
(q−f

2

)
interactions will have no active parents. Also, f quadratic

effects correspond to the f main effects and there are (q − f) quadratic effects which does

not have the corresponding main effect in the model. Expanding (B.3) yields an expected

total number of terms (including main effects) as

E(#effects | f active main effects)

= c1pq(q − 1)/2 + qpd1 (B.4)

+ f

[
1 +

p

2
(c1 − c3) + pq(c2 − c1) + (d2 − d1)p

]

+ f2 p

2
[c1 − 2c2 + c3] .

Since f is Binomial with q trials and probability of success p, we have E(f) = pq and

E(f2) = pq(1− p + pq). Taking the expectation of (B.4) with respect to f yields

E(#effects) = c1pq(q − 1)/2 + pqd1

+ pq

[
1 +

p

2
(c1 − c3) + pq(c2 − c1) + (d2 − d1)p

]

+pq(1− p + pq)
p

2
[c1 − 2c2 + c3] .

Further simplification yields

E(#effects) = pq + p

(
q

2

) {
c1 + 2p(c2 − c1) + p2(c1 − 2c2 + c3)

}

+ pq [(d2 − d1)p + d1)] . (B.5)

For specified values of q, c1, c2, c3 and an expected number of effects, this cubic in p can

easily be solved for p. Note that the expected number of main effects is pq, the first term

of (B.5).
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B.3 HD Optimal Design

Table 15: 18-run HD optimal design

1 2 0 0 2 2 2
0 0 0 0 0 0 0
0 0 2 0 2 2 0
0 1 0 2 0 2 0
1 0 2 0 0 0 2
0 2 1 2 0 2 2
0 2 2 0 2 1 2
2 0 2 2 2 2 2
0 2 2 2 2 0 0
2 0 0 0 2 1 0
2 2 2 0 0 2 0
2 1 1 1 1 2 1
2 0 0 2 0 2 2
2 2 0 0 0 0 2
0 0 0 2 1 0 2
2 2 2 2 0 0 1
2 2 0 2 2 0 0
1 0 0 1 2 0 1
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APPENDIX C

ALIASING RELATIONS OF MIXED FACTORIALS IN

THE FORM OF PRODUCT ARRAYS

Definition 1 Following Bose (1947), we give the definition for treatment contrasts be-

longing to factorial effects for the general case of an s1 × . . . × sn factorials. A treatment

contrast
s1−1∑

j1=0

· · ·
sn−1∑

jn=0

`(j1 . . . jn)τ(j1 . . . jn)

belongs to the factorial effect Fi1 . . . Fig (1 ≤ i1 < . . . < ig ≤ n; 1 ≤ g ≤ n) if

(i) `(j1 . . . jn) depends only on ji1 , . . . , jig , and

(ii) writing `(j1 . . . jn) = `(ji1 . . . jig) in view of (i) above, the sum of `(ji1 . . . jig) separately

over each of the arguments ji1 , . . . , jig , is zero.

The following two lemmas are immediate.

Lemma A.1 Let (a, b) = (a1, . . . , an1 , b1, . . . , bn2)
′ be any fixed nonnull vector where ai ∈

GF (s1) and bj ∈ GF (s2). Then each of the sets

Vi,j(a, b) = {(x, y) = (x1, . . . , xn1 , y1, . . . , yn2 , )
′ :

a′x = αi, b
′y = βj} (C.1)

0 ≤ i ≤ s1 − 1, 0 ≤ j ≤ s2 − 1 has cardinality sn1−1
1 sn2−1

2 .

Lemma A.2 If (a(1), b(1)) and (a(2), b(2)) are distinct pencils, then for every (i, j), (i′, j′),

(0 ≤ i, i′ ≤ s1 − 1, 0 ≤ j, j′ ≤ s2 − 1), the set Vi,j(a(1), b(1)) ∩ Vi′,j′(a(2), b(2)) has cardinality

sn1−2
1 sn2−2

2 .
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C.1 Proof of Result 1.

(a)

Consider distinct pencils, (a, b) and (a∗, b∗). Let

L =
s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j(a,b)

τ(x, y)}, (C.2)

and

L∗ =
s1−1∑

k=0

s2−1∑

l=0

l∗(k, l){
∑

(x,y)∈Vk,l(a∗,b∗)

τ(x, y)}, (C.3)

be the treatment contrasts belonging to (a, b) and (a∗, b∗), respectively. Here

s1−1∑

i=0

l(i, j) =
s2−1∑

j=0

l(i, j) = 0, (C.4)

and

s1−1∑

k=0

l∗(k, l) =
s2−1∑

l=0

l∗(k, l) = 0. (C.5)

Consider the scalar product of the coefficient vectors in (C.2) and (C.3). Observe that, for

any (i, j) and (k, l), if (x, y) ∈ Vi,j(a, b)∩Vi,j(a∗, b∗), then the contribution of τ(x, y) to this

scalar product equals l(i, j)l∗(k, l). Hence the scalar product equals

∑ ∑
l(i, j)l∗(k, l)#{Vi,j(a, b) ∩ Vk,l(a∗, b∗)}

which is zero by (C.4), (C.5) and Lemma A.2.

(b)

Without loss of generality, let i1 = 1, . . . , ig = g and j1 = 1, . . . , jh = h. Then a1, . . . , ag

are nonzero while ag+1 = . . . = an1 = 0 and b1, . . . , bh are nonzero while bh+1 = . . . = bn2 =

0, so that

Vi,j(a, b) = {(x, y) :
g∑

k=1

akxk = αi,
h∑

l=1

blyl = βj}

0 ≤ i ≤ s1−1 and 0 ≤ j ≤ s2−1. Recalling the definition of a treatment contrast L in equa-

tions (1) and (2), it is easy to see that for and (x, y), the coefficient of τ(x, y) in L depends
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on (x, y) only through x1, . . . , xg and y1, . . . , yh. In fact, writing l(x1, . . . , xg, y1, . . . , yh) for

the coefficient of τ(x, y) in L, one gets

l(x1, . . . , xg, y1, . . . , yh) = l(i, j)

if
g∑

k=1

akxk = αi,
h∑

l=1

blyl = βj , (C.6)

0 ≤ i ≤ s1 − 1 and 0 ≤ j ≤ s2 − 1. Now, as a1 6= 0, the quantity
∑g

k=1 akxk equals each of

α0, α1, . . . , αs1−1 once as x1 assumes all possible values over GF (s1), each exactly once, for

any fixed x2, . . . , xg, y1, . . . , yh. Hence by (C.6)

∑

x1∈GF (s1)

l(x1, . . . , xg, y1, . . . , yh) = 0,

for any fixed x2, . . . , xg, y1, . . . , yh. Similar arguments for other xk and yl’s complete the

proof.

C.2 Proof of Lemma 1.

L(B) =
s1−1∑

i=0

s2−1∑

j=0

l(i, j){
∑

(x,y)∈Vi,j((a,b),B)

τ(x, y)},

and

L∗(B) =
s1−1∑

i=0

s2−1∑

j=0

l∗(i, j){
∑

(x,y)∈Vi,j((a∗,b∗),B)

τ(x, y)}.

Therefore, it is enough to show that

Vi,j((a, b), B) = Vi,j((a∗, b∗), B)∀i, j.

Since (a, b) and (a∗, b∗) are are aliases of each other, we have a−a∗ = B′
1λ and b− b∗ = B′

2ξ

for suitable λ ∈ GF (s1) and ξ ∈ GF (s2). Now,

Vi,j((a, b), B)

= {(x, y) : a′x = αi, b
′y = βj , B1x = 0, B2y = 0}

= {(x, y) : (a∗ + B′
1λ)′x = αi, (b∗ + B′

2ξ)
′y = βj ,

B1x = 0, B2y = 0}
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= {(x, y) : a∗′x + λ′B1x = αi, b
∗′y + ξ′B2y = βj ,

B1x = 0, B2y = 0}

= {(x, y) : a∗′x = αi, b
∗′y = βj , B1x = 0, B2y = 0}

= Vi,j((a∗, b∗), B)

which completes the proof of the lemma.
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Table 16: Design Matrix, Paint Experiment

Run A B C D E F

1 1 1 0 1 1 2
2 0 1 1 1 1 2
3 1 0 1 1 1 2
4 0 0 0 1 1 2
5 1 1 0 2 1 0
6 0 1 1 2 1 0
7 1 0 1 2 1 0
8 0 0 0 2 1 0
9 1 1 0 0 1 1
12 0 1 1 0 1 1
11 1 0 1 0 1 1
12 0 0 0 0 1 1
13 1 1 0 1 2 0
14 0 1 1 1 2 0
15 1 0 1 1 2 0
16 0 0 0 1 2 0
17 1 1 0 2 2 1
18 0 1 1 2 2 1
19 1 0 1 2 2 1
20 0 0 0 2 2 1
21 1 1 0 0 2 2
22 0 1 1 0 2 2
23 1 0 1 0 2 2
24 0 0 0 0 2 2
25 1 1 0 1 0 1
26 0 1 1 1 0 1
27 1 0 1 1 0 1
28 0 0 0 1 0 1
29 1 1 0 2 0 2
30 0 1 1 2 0 2
31 1 0 1 2 0 2
32 0 0 0 2 0 2
33 1 1 0 0 0 0
34 0 1 1 0 0 0
35 1 0 1 0 0 0
36 0 0 0 0 0 0
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APPENDIX D

SEQUENTIAL ELIMINATION OF LEVEL

COMBINATIONS BY MEANS OF MODIFIED GENETIC

ALGORITHMS

D.1 Identification of Significant factors : A Bayesian Ap-
proach

The model selection problem amounts to identifying a subset of predictors as active. In

this setting there are typically many parameters to estimate. Here we review a stochastic

variable selection method, based on Gibbs sampler. Starting with the given design and the

corresponding responses, the linear regression with normal errors is

y = Xβ + σε, ε ∼ N(0, 1) (D.1)

where β contains linear and quadratic main effects and linear-by-linear interaction effects.

Importance of effects is captured via an unobserved vector δ of zeros and ones where δi =

I{βi 6= 0}. A normal mixture prior is used for the coefficients β :

f(βi|δi) =





N(0, τ2
i ), if δi = 0,

N(0, (ciτi)2), if δi = 1.
(D.2)

When δi = 0, βi has a large mass around zero and thereby, is not likely to have a large

effect. On the other hand, when δi = 1, a large value of ci ensures that the variable is likely

to have a large influence.

The Bayesian method finds posterior probabilities of β’s. Details are given by Chipman

et al. (1997). The hierarchical priors on the linear, quadratic and linear-by-linear interaction

effects of the factors reflect the common beliefs like effect sparsity, effect hierarchy and effect

inheritance (Wu and Hamada, 2000). Priors used in the current analysis are given next:

P (δA = 1) = p, (D.3)
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P (δA2 = 1|δA) =





0.1p if δA = 0,

p if δA = 1,
(D.4)

P (δAB = 1|δA, δB) =





0.1p if δA + δB = 0,

0.5p if δA + δB = 1,

p if δA + δB = 2.

(D.5)

In the current analysis, p = 0.25 is chosen. Following George and McCulloch (1993),

τj = ∆y
3∆Xj

is taken where ∆y represents a “small” change in y, and ∆Xj represents a large

change in Xj . In our example, ∆Xj = max(Xj) −min(Xj) and ∆y =
√

Var(y)/5 is used.

The posterior probabilities of β’s are computed using Gibbs sampler.
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