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Abstract

In this article, we study multi-objective optimal designs for event-related func-
tional magnetic resonance imaging (ER-fMRI). The objectives considered are two
common statistical goals, namely estimation and detection. We focus on the case
when both individual stimulus effects and pairwise contrasts are of interest. Using
a genetic algorithm, we search for optimal designs under different multi-objective
design criteria. We study the designs that we obtain under different weights for
individual stimulus effects and pairwise contrasts. We also study the performance
of popular ER-fMRI designs currently in use by fMRI researchers.
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1 Introduction

ER-fMRI is one of the leading technologies for studying human
brain activity in response to brief mental stimuli or tasks. Unlike the
traditional fMRI, where long-period stimuli are used, ER-fMRI takes
advantage of an ultra-fast MR scanner to allow the study of an effect
due to a single, brief stimulus. ER-fMRI is a popular technique for
brain mapping in both medical practice and scientific research and is
arguably the most important advance in neuroscience (Rosen et al.,
1998; Josephs and Henson, 1999; Culham, 2006).

A design for an ER-fMRI study consists of a sequence of stimuli
of one or more types interlaced with a control condition (rest or fixa-
tion). Finding an optimal sequence of the stimuli best suited to the
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researcher’s need can be arduous. There are multiple reasons for this.
First, an ER-fMRI design is a long sequence of finite numbers, typi-
cally consisting of hundreds of elements. The design space containing
all possible arrangements is thus enormous and irregular (Buracas and
Boynton, 2002; Liu, 2004). Second, the nature of ER-fMRI requires
consideration of multiple objectives in a study. These objectives in-
volve not only statistical goals but also psychological constraints. In
addition, customized requirements can arise to make the problem even
more complicated. To overcome these difficulties, an efficient search
algorithm along with a well-defined multi-objective criterion (MO-
criterion) is called for.

An efficient approach to search for multi-objective optimal designs
for ER-fMRI is proposed by Kao et al. (2009). Their search algorithm
is a genetic algorithm (GA) and their multi-objective design criteria
are convex combinations of criteria for single objectives. Two popular
statistical objectives in ER-fMRI are estimation and detection. Esti-
mation refers to the estimation of the hemodynamic response function
(HRF), a function of time describing the effect on the brain of a sin-
gle, brief stimulus. Detection aims at investigating whether a region
is activated by each stimulus type. This is accomplished by sepa-
rately studying the amplitudes (or the peaks) of the HRFs evoked by
different stimulus types. For both statistical objectives, a researcher
may be interested in studying individual stimulus effects and pairwise
contrasts of stimulus effects (Amaro and Barker, 2006; Liu and Frank,
2004; Donaldson and Buckner, 2002). Kao et al. (2009) consider op-
timal designs for each of these two interests. However, following Liu
and Frank (2004) and Liu (2004), in this paper we study designs that
are efficient if both individual effects and pairwise contrasts are of in-
terest. In contrast to earlier work, our approach allows user-specified
weights for individual stimulus effects and pairwise contrasts.

The search algorithm proposed by Kao et al. (2009) is adopted
to search for optimal designs, but we define a different family of MO-
criteria to meet the goal of this study. Each MO-criterion is a weighted
sum of the criteria for estimation and detection, and each of the lat-
ter criteria is defined based on a convex combination of the criteria
for individual stimulus effects and pairwise contrasts. We study ef-
ficient designs that we obtain by using different weighting schemes,
and compare them to designs currently in use by fMRI researchers.

In the following section, we briefly introduce background informa-
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tion regarding ER-fMRI designs. Section 3 describes our methodology
including the statistical model, the design criteria and the search al-
gorithm. Numerical results are presented in Section 4 and conclusions
are provided in Section 5.

2 ER-fMRI designs

An ER-fMRI design is an alignment of events, including stim-
uli of different types and the control. For convenience, the symbols
0,1,...,Q are used to represent the events, where () is the total num-
ber of stimulus types. The control is indicated by 0 and a type-
stimulus is denoted by 4, i = 1,...,Q. A design, denoted by &, looks
like & = {101201210...1}. While being presented to the experimental
subject, each event lasts for a short period of time relative to the inter-
stimulus interval (ISI), the fixed time interval between event onsets.
We note that Os in a sequence are “pseudo-events”. They may be
thought of as periods of rest for the subject, even though the subject
may still experience effects from previous events.

While the design sequence is presented, the MR scanner scans the
subject’s brain every few seconds; the time duration between two scans
is referred to as TR or time to repetition. The blood oxygenation level
dependent (BOLD) signals at each brain voxel (a small region of the
brain) is collected every TR seconds to form a voxel-wise fMRI time
series. A design issue for ER-fMRI is to allocate the stimuli so that
statistical inference (related to estimation or detection) on these time
series is most efficient, in some sense.

Depending on the study objectives, several well-known ER-fMRI
designs currently in use by researchers are block designs, m-sequence-
based designs, mixed designs, permuted block designs, and clustered
m-sequences (Liu, 2004). In ER-fMRI, a block design is a sequence
where stimuli of the same type are clustered into blocks. For example,
a two-stimulus-type block design with a block size of four can consist
of repetitions of {111122220000}. Repetitions of {1111000022220000}
and {11112222} are other possible patterns. Block designs are good
for detection because, at a region that is activated by a particular
stimulus type, the lingering effects evoked by stimuli of that type will
accumulate to create strong signals under block designs. The dif-
ference in the signal intensity between activation and non-activation
increases, and this helps in identifying activation. Agreeing with this



238 MING-HUNG KAO ET AL. [VoL.6, Nos.1 & 2

intuition, block designs yield high design efficiencies when the detec-
tion problem is the only concern.

The m-sequence-based designs are m-sequences (Barker, 2004; God-
frey, 1993) and designs constructed from m-sequences. These se-
quences can be constructed from Galois fields or Reed-Muller codes
(cf. MacWilliams and Sloane, 1977, Ch. 14), and look rather random
with no clear pattern. They only exist if () + 1 is a prime or prime
power. The use of these designs for estimating the HRF is first pro-
posed by Buracas and Boynton (2002). Liu and Frank (2004) and Liu
(2004) also study these designs. The m-sequence-based designs have
high efficiencies for estimation.

Mixed designs, permuted block designs, and clustered m-sequences
are studied by Liu and Frank (2004) and Liu (2004) for the case when
both estimation and detection are of interest. It is shown that there
are designs in these classes that offer advantageous trade-offs between
the two competing statistical objectives. A mixed design is formed
by concatenating a fraction of a block design with a fraction of an
m-sequence (or a random design). By changing the length of the
“blocky” part, and hence that of the “random” part, the resulting
designs can move toward having high efficiencies for estimation or high
efficiencies for detection. Permuted block designs can be generated by,
repeatedly, exchanging positions of two randomly chosen events in a
block design. The efficiency for estimation is gradually increased, at
the expense of the ability for detection. Clustered m-sequences are
created by permuting events in an m-sequence so that the resulting
design becomes more “blocky”. The design gradually moves toward
having a higher efficiency for detection.

3 Methodology

3.1 Statistical models

In this section, we specify the underlying model for the two pri-
mary statistical objectives, namely estimation and detection. As in
Wager and Nichols (2003) and Liu and Frank (2004), two popular lin-
ear models are considered (see also Friston et al., 1995; Worsley and
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Friston, 1995; Dale, 1999):

Y = Xh+ Svy+e, and (1)
Y =260+ Sv+n, (2)

where Y is the voxel-wise fMRI time series, h = (h},...,hy)" is
the parameter vector for the HRF's of the @) stimulus types, X =
[ X --- X ] is the design matrix, @ = (6, ...,0g)" represents the re-
sponse amplitudes, Z = X hg is the convolution of stimuli with an
assumed basis, hg, for the HRF, S+ is a nuisance term describing
the trend or drift of Y, and e and i are noise. Following Wager and
Nichols (2003), we assume a known whitening matrix, V', such that
Ve and V'n are white noise. Model (1) is typically used for estimating
the HRF and model (2) for detecting activation.

Our model formulation, explained in more detail in the remainder
of this subsection, follows Kao et al. (2009). The major advantage
of this model formulation lies in the use of the discretization inter-
val (Dale, 1999) for parameterizing the HRF. The discretization en-
ables the use of a finite set of interpretable parameters to capture
the fluctuation of the continuous HRF over time. The length of the
discretization interval, denoted by AT, is set to the greatest value
dividing both the ISI and TR. The HRF parameters, captured in the
vector h, then represent the heights of the HRF for each stimulus after
every AT seconds following the stimulus onset. This parametrization
is explained in the following example.

Example 3.1. In Figure 1, we consider one stimulus type (Q = 1).
The time interval between two consecutive events is 2s (ISI = 2s), and
that between two successive scans is 3s (TR = 3s). An illustrative
design is £ = {110100...} with three stimuli taking place at 2s, 4s and
8s, respectively. These three stimuli are presented by vertical bars in
the figure, and are followed by curves that represent the evoked HRF.
The heights of these three overlapping HRF's accumulate to form the
dash-dot curve. This curve represents the noise-free and trend-free
BOLD responses induced by the three stimuli; it corresponds to Xh
in model (1).

The four vertical lines correspond to the first four MR scans at
which the BOLD signal is observed. The heights of the HRFs, or
equivalently the effects of the stimuli, that contribute to the observed
signal are indicated by the dots on the lines. These heights are dif-
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Figure 1: HRF parametrization with ¢) = 1, ISI = 2s, TR = 3s and
AT = 1s.

ferent. Therefore, we need different parameters to represent them as
well as any other heights that could possibly contribute to a response.

Under the combination of ISI and TR in this example, the heights
that could contribute to an observation occur every second on the HRF
curve. They are shown as dots and squares on the third curve in
Figure 1. The reason for the 1 second intervals is that a scan can
occur 1s, 2s, 3s, ... after the onset of an event. In general, this
time difference must be a multiple of the greatest number dividing
both ISI and TR. Setting AT to this greatest common divisor, our
HRF parameters then describe the discretized HRF, h((j — 1)AT),
j = 1,2,.... Here, h(t) is the HRF at time t following the stimulus
onset; t = 0 corresponds to the stimulus onset. All heights that could
possibly make a contribution to an observation are represented with
this parametrization. In addition, irrelevant heights that will never
contribute to a response are left out.

The parameter vector h; = (hy, ..., hy;)' represents the HRF, h;(t),
for the type-i stimulus. With AT as defined in Example 3.1, we use
h;; to denote the height h;((j — 1)AT); j =1, ..., k. Here, the length
of h; is k =1+ | K/AT|, where |a]| is the greatest integer less than
or equal to a and K is the duration of the HRF, counting from the
stimulus onset to the complete return to baseline.
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The matrix X in model (1) is determined by both the design
sequence and the HRF parametrization. The matrix corresponding
to Example 3.1 is provided below as an illustration. If the duration of
the HRF is 32 seconds then (since ) = 1) there are 33 columns. Each
column is linked to an h;; and is labeled by t; = (j — 1)AT (AT =
%s). P){ows are labeled by scanning times, which are multiples of TR

= 39).

Os 1s 2s 3s 4s bs 6s 7s 8s 9s 10s 1l1s

R A A e !

3s— 0 1 0 O O O O o0 o0 o0 0 0

X=X, = 6s— 0O O 1 O 1 0O O 0 o0 O 0 0
9s— 0 1 0 O 0O 1 0 1 o0 o0 0 0

2¢— 0 O O O 1 O O O 1 o0 1 0

While using model (2), the same basis function, hy, for the HRFs
is assumed for detection for each stimulus type. Throughout this ar-
ticle, we consider hgy to be the canonical HRF of the software SPM2
(http://www.fil.ion.ucl.ac.uk /spm/software/spm2/), which is a com-
bination of two gamma distributions and is scaled to have a maximal
value of one. In model (2), the matrix Z = X hy represents the convo-
lution of the stimuli with hg; see, e.g., Josephs et al. (1997) for details.
The parameter 6 represents the maximal heights for the HRF's evoked
by the stimuli. The larger #; the more the region is activated by the
type-¢ stimulus.

As stated, the same basis function hg is assumed for all the
stimulus types. Only the amplitudes are allowed to vary. However,
incorporating different basis functions for different stimuli is also pos-
sible in our approach. One can simply take Z = [X 1h(()1) o X Qh(()Q)],
but this setting is beyond the scope of the current work.

3.2 Design criteria

For models (1) and (2), we consider the parametric functions C,h
and C'.0, respectively, where

=0 ) g |~ | (1=0)Ig
CI‘{ 5D, |9~ &p. |-

Here, I, is the a-by-a identity matrix, D, (with elements of 0 and
+1) is the (Q(Q — 1)/2)-by-Q matrix in which the rows correspond
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to the Q(Q — 1)/2 pairwise contrasts, D, = D, ® I with ® being
the Kronecker product, and ¢, §, € [0,1]. When §, = §, = 0, the
parametric functions correspond to individual stimulus effects only.
When 6, and 0, increase, more weight is assigned to pairwise contrasts.
With 0, = . = 1 we have the case when only pairwise contrasts are
of interest. We note that Kao et al. (2009) study the two extreme
cases of 0 and 1 separately. Liu and Frank (2004) and Liu (2004)
investigated the case when ¢, = 0, = 1/2. In this study, we allow
the values of 9, and J, to vary between 0 and 1. For simplicity, we
consider ¢, = ¢,. However, the equality between the two coefficients
is not required in our approach.

With these parametric functions of interest, we define the design
criteria for estimation and detection. For estimation, the design cri-
terion is

1
Tcx{tmce{cx [X'V'(I — PVS)VX} _IC;}}

-1
= rw{(l — 0, )*trace[M ;'] + (ﬁtrace[DchxlD’x]} :

where £ is the design, M, = M ,(§) = X'V'(I — P,5)V X is the
information matrix for h, P, = A(A’A)"' A’ is the orthogonal pro-
jection onto the vector space spanned by the columns of A, and r.,
is Q for 0, =0, Q(Q —1)/2+ Q for §, € (0,1) and Q(Q — 1)/2 for
0, = 1.

Similarly, we define the design criterion for detection as

~1
rcz{trace{Cz [Z/V/(I — PVS)VZ} 10’2}}

-1
= rcz{(l — 6,)*trace[M ;'] + dftrace[DzM;lD’z]} ,

where M, = M ,(§) = Z'V'(I — Pys)V Z, and r, is kQ for §, = 0,
EQ(Q —1)/2 + kQ for 6, € (0,1) and kQ(Q — 1)/2 for 6, = 1. The
weights assigned to individual stimulus effects may be thought of as
Ae = (1=6,)2/[(1=0,)?+ 6% and A\, = ((1—4,)%/[(1—46.)*+ 2], with
1—X; and 1=\, being the weights for pairwise contrasts. To explicitly
present the dependence of the design criteria on the design and the
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weights, we use F,(; ;) to indicate the criterion for estimation and
Fy(&; X,) is for detection.
In general, we define the family of MO-criteria as

{F* = wF (& A)+(1—w)F; (&) tw € [0,1], Ay, \s € [0, 1]}7 (3)

where (suppressing &, A\, and A,)

. k. LLCO ) S S

max(F;) — min(F})
We use the extreme values of Fj; and F, to normalize these two criteria
before combining them. This is done to ensure comparability between
the two criteria; see also, Imhof and Wong (2000). The values of w,
A and A\, can be assigned based on the researcher’s discretion. After
specifying these values, an MO-criterion is well-defined and the search
algorithm of Kao et al. (2009) can be applied to search for optimal
designs. The search algorithm is based on a genetic algorithm and is
briefly introduced in the next section.

3.3 Search algorithm

GAs (Holland, 1975; 1992) are popular for solving optimization
problems, in which good solutions (parents) are used to generate bet-
ter ones (offsprings). The GA proposed by Kao et al. (2009) takes
advantage of well-known results about good fMRI designs so that the
search over the huge design space can be carried out more efficiently.
The outline of the algorithm is as follows:

Step 1. (Initial designs) Generate G initial designs consisting of
random designs, an m-sequence-based design, a block design
and their combinations. Use the objective function to evaluate
the fitness of each initial design.

Step 2. (Crossover) With probability proportional to fitness, draw
with replacement G/2 pairs of designs to crossover — select a
random cut-point and exchange the corresponding fractions of
the paired designs.
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Step 3. (Mutation) Randomly select ¢% of the events from the G
offspring designs. Replace these events by randomly generated
ones.

Step 4. (Immigration) Add to the population another I designs
drawn from random designs, block designs and their combina-
tions.

Step 5. (Fitness) Obtain the fitness scores of the offsprings and
immigrants.

Step 6. (Natural selection) Keep the best G designs according to
their fitness scores to form the parents of the next generation.
Discard the others.

Step 7. (Stop) Repeat steps 2 through 6 until a stopping rule is met
(e.g., after M generations). Keep track of the best design over
generations.

Details about this algorithm can be found in Kao et al. (2009).
It is worth noticing that the objective function used in Step 1 and
Step 5 can be taken as the design criterion for estimation, or that for
detection, or an MO-criterion. To use our MO-criterion, the extreme
values of F, and Fj are required. Theoretical values of max(F.) and
max(Fy) are generally not available. They are thus approximated
numerically by the GA using the non-standardized function F, (or
F;) as the objective function. The values of min(F,) and min(F})
are set to zero, corresponding to designs for which the parametric
functions of interest are non-estimable.

When searching for optimal designs, we follow Kao et al. (2009)
touse G =20,¢q=1,1 =4 and M = 10,000. A larger M does not
seem to lead to significantly better designs.

4 Numerical results

We study optimal ER-fMRI designs through a series of numerical
simulations. The focus is on investigating the impact of A = A\, = A,
for which we will consider the values of 1, 3/4, 2/3, 1/2, 1/3, 1/4,
1/8, 1/16 and 0. The case A = 1/2 is also studied by Liu (2004).
The number of stimulus types (@) considered ranges from 2 to 4.



2008 OPTIMAL DESIGN FOR FUNCTIONAL MRI 245

The length of the design is L = 242 for ) = 2, L = 255 for ) = 3
and L = 624 for ) = 4. Under these combinations of () and L, an
m-sequence exists. We will consider two cases for the model. Case I
assumes that errors are white noise, i.e., V' = I, and that S is a vector
of ones. For Case II, we assume a stationary AR(1) error process with
a correlation coefficient of 0.3, while S+ is taken to be a second-order
Legendre polynomial drift. The resulting models for this case are
closer to those that are used by fMRI researchers. The ISI and TR
are both set to 2 seconds, so that AT is also 2 seconds. Under these
conditions, we search for optimal designs using our genetic algorithm
approach with specified optimality criteria.

4.1 Designs for detection

Here, we study the case when only detection is of interest; i.e.,
w = 01in (3). As described in Section 2, block designs are expected
to be optimal and our approach yields designs with a block structure.
Figures 2 and 3 present these designs for () = 2 and () = 3, respec-
tively. Different shades of grey indicate different stimulus types and
white represents the control. The number above each block is the
number of events contained in that block. For example, the top-left
design in Figure 2 starts with seven controls (pseudo-events), followed
by eight stimuli of one type and ends with a stimulus of the other type.
We do not present the designs for () = 4 since they provide little ad-
ditional insight.

From Figures 2 and 3, the occurrence of the control condition
decreases with A. The range of the frequencies of the stimulus types
in our designs is presented in Table 1. For both cases, the results
agree with the approximated optimal stimulus frequencies that Liu
and Frank (2004) derived for Case I.

In Table 2, we present relative efficiencies for the designs that we
obtain. For example, for () = 3 under Case I, the entry 93.9 for the
row labeled Fj({; A = 1) and the column labeled §f/2 indicates that
the optimal design for A = 1/2, @ = 3 and Case I, say Sfﬂ, has an

efficiency of 93.9% for detection if A = 1. If we denote the optimal
design for A = 1 by &%, this means that

Fd(gf/g; 1)

= 93.9%
Fd(f‘f? 1) ’
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Case | Case ll

Figure 2: The designs obtained by our approach for detection with
various A when Q = 2. The rows corresponds to A = 1, 3/4, 1/2,
1/4, 1/16, and 0, respectively. The first column is for Case I and the
second column for Case II.
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Case | Case ll

Figure 3: The designs obtained by our approach for detection when
@ = 3. The rows corresponds to A = 1, 3/4, 1/2, 1/4, 1/16, and 0,
respectively. The first column is for Case I and the second column for
Case II.
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Table 1: Stimulus frequencies (range over different stimulus types) of
our designs for detection!

A

Q 1 3/4 2/3 1/2 1/3 1/4 1/8 1/16 0
Case 1
2 0.29-0.30 0.31 0.32 0.33 0.35-0.36 0.36-0.37 0.39-0.40 0.42-0.43 0.50
(0.30) (0.31) (0.32) (0.33) (0.36) (0.37) (0.40) (0.42) (0.50)
3 0.21-0.22 0.24 0.24 0.25 0.26-0.27 0.27 0.29 0.30-0.31 0.33
(0.21) (0.23) (0.24) (0.25) (0.26) (0.27) (0.29) (0.30) (0.33)
4 0.17 0.18-0.19 0.19 0.20 0.21 0.21-0.22 0.22-0.23 0.23 0.25
(0.17) (0.18) (0.19) (0.20) (0.21) (0.22) (0.23) (0.23) (0.25)
Case II
2 0.29-0.30 0.31-0.32 0.31-0.32 0.33-0.34 0.36 0.37 0.40 0.42 0.50
3 0.22 0.23-0.24 0.24-0.25 0.25-0.26 0.26-0.27 0.27-0.28 0.29-0.30 0.29-0.31 0.33-0.35
4 0.17 0.18-0.19 0.19 0.20-0.21 0.21 0.21-0.22 0.22-0.23 0.23-0.24 0.25

Lvalues in parentheses are the approximated optimal stimulus frequencies from Liu and Frank (2004)

Of course, §f/2 has an efficiency of 100% if A = 1/2, but this value is
not shown in Table 2.

From Table 2, the optimal designs for pairwise contrasts (A = 0)
have an efficiency of less than 7% if interest is only in individual
stimulus effects (A = 1). On the other hand, optimal designs for
individual stimulus effects are more robust, with an efficiency of at
least 58.8% for pairwise contrasts. The table can also be used to find
designs that achieve similar relative efficiencies for the two competing
interests. For Q) = 2, ff/S achieves similar F}(&;1)- and Fj(&;0)-
values. This holds for Case I and Case II. For () = 3 and @ = 4,
the same is true for ff/4 and ff/?), respectively. Moving away from
these As, we find designs that achieve a higher relative efficiency for
one interest than for the other. Note that, equal weight for individual
effects and pairwise contrasts (i.e., A = 1/2) does not necessarily yield
balanced relative efficiencies for the two interests.

4.2 Designs for estimation

In this simulation, we study the optimal designs when the focus is
on estimation; i.e., w = 1 in (3). For this situation, m-sequence-based
designs are often recommended. They are included as initial designs of
our search algorithm, which is used again to search for optimal designs
under the current setting. Table 3 presents the F.(&; A)-value of our
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Table 2: Relative efficiency (percentage) for individual stimulus effects
and pairwise contrasts of our designs for detection

Q Criterion Designs for Detection

d d d d d d d d d
'51 §3 4 '52 3 §1 2 '51 3 '51 4 §1 8 '51 16 §0

Case I
2 FX(&Xx=1) 100.0 99.5 99.0 97.3 940 89.7 783 64.9 4.9
Fr(&X=0) 58.8  62.2  63.7 66.8 70.7 73.7 798 85.2  100.0
3 F;(&X=1) 100.0 98.7 974 939 87.3 81.6 67.6 56.9 6.1
Fr (&2 =0) 63.6 69.8 71.8 75.6 T79.7 829  88.6 90.1  100.0
4 Fj(&x=1) 1000 973 955 907 832 776 619 47.9 3.0
FI(&X=0) 68.5  76.1 78.2 81.8 854 874 918 94.1  100.0

Case IT
2 Fj(&x=1) 100.0 99.6 993 974 934 904 793 65.6 5.5
F5(&X=0) 59.6  63.1 64.3 67.5 T71.6  73.7  79.5 84.8  100.0
3 Fq,: (&2 =1)  100.0 98.5 97.5 93.7  88.1 82.7  64.8 55.9 6.7
Fr(&X=0) 64.4 699 71.6 755 79.0 81.6  84.0 90.6  100.0
4 F3(&X=1) 100.0 98.8 96.8 91.7  84.1 75.5  62.4 48.1 3.6
FI(& 2 =0) 68.1 742 759 80.2 837 844  88.7 91.6  100.0

Table 3: Efficiency (percentage) for estimation of our designs relative
to the m-sequence-based designs

Q Designs for Estimation

31 €5/4 €573 52 €53 54 &8 €16 £6
Case I

2 101.8 100.3 100.2 100.2 101.9 103.9 109.6 116.8 146.6

3 104.9 101.0 100.3 100.5 102.0 103.8 109.3 114.2 131.8

4 108.9 101.3 100.3 100.0 101.0 102.3 106.4 110.3 122.3
Case 11
2 106.5 105.3 105.1 105.5 107.6 109.9 116.9 125.1 157.3

3 109.7 106.2 105.8 106.2 108.6 110.8 116.7 122.2 141.6

4 112.6 105.1 104.2 103.7 105.5 107.2 111.7 115.8 128.8

designs relative to the initial m-sequence-based design (in percentage).
From the table, the efficiency of the m-sequence-based designs can
be improved markedly when A moves away from 1/2. When X is
close to 1/2, it is hard for Case I to find designs that are better
than the m-sequence-based designs. In that particular situation, the
stimulus frequencies of the m-sequence-based designs are close to the
approximated optimal stimulus frequencies of Liu and Frank (2004).
Our designs also yield similar frequencies in that situation. For other
values of A\, our approach yields designs with higher efficiencies and
the stimulus frequencies of the resulting designs are consistently in
good agreement with the optimal stimulus frequencies.

It is known that the m-sequence-based designs can be suboptimal
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under correlated noise and the appearance of drift; see, e.g., Kao et al.
(2009) and Buracas and Boynton (2002). In contrast, our approach
can adapt to these situations and lead to better designs. This is
reflected in Table 3 for Case II. Even for A = 1/2, when the stimulus
frequency of our designs is similar to that of the m-sequence-based
designs, the pattern of our designs beats that of the m-sequence-based
designs.

Table 4, which is to be read in a similar way as Table 2, presents
the relative efficiency achieved by our designs. Similar as for detection,
&7 is more robust to a change in interests than ;. Designs ff/g for
Q = 2, ff/4 for ) = 3 and §f/16 for () = 4 provide similar relative
efficiencies for the two interests.

Table 4: Relative efficiency (percentage) for individual stimulus effects
and pairwise contrasts of our designs for estimation

Q Criterion Designs for Estimation

€% &5/4  S5y3  Sip  Siys Eiya 81 Sijie 6

Case I
2 FX(&X=1) 100.0 99.1 989 972 944  89.9 774 67.3 10.6
FX(&X=0) 61.5 657 66.4 69.4 73.0 76.8  83.3 87.4  100.0
3 FX(¢&;A=1) 100.0 982 96.2 946 879 837 710 56.6 11.6
FX(& X =0) 66.8 725 752 77.2 81.5 83.6  88.6 92.1  100.0
4 FX(&A=1) 100.0 973 951 91.5 83.0 76.5  62.4 48.4 11.6
FX (&2 =0) 687 757 78.3 81.6 856 87.8 91.7 94.7  100.0

Case 11
2 FX(¢&;A=1) 100.0 99.1 99.1 974 928 883 79.8 65.7 13.9
FX(& A =0) 61.4 655 655 69.2 745 781  82.6 88.2  100.0
3 FX(&A=1) 100.0 983 97.3 93.6  86.6 820  68.4 57.7 12.9
FX (&2 =0) 66.2 71.8 73.4 775 821 843  89.0 91.5  100.0
4 FX(&A=1)  100.0 97.6 957 90.2 819 765 615 48.7 8.0
FX (&2 =0) 685 752 77.4 814 858 87.8 91.9 94.4  100.0

4.3 Multi-objective designs

In this simulation, we allow the weight w to increase from 0 to 1 in
steps of 0.05, thereby, gradually shifting emphasis from the detection
problem to the estimation problem. For each () and A and for both
cases, 21 optimal designs are obtained (one for each w-value). Figure
4 presents the F*(&; \)- versus Fj(&; A)-values of the resulting designs
for Q = 2 and Case 1. Similar figures for other settings provide no
further insight and are therefore omitted. The designs introduced in
Section 2 are also presented in the figure. The block design in Figure
4 is the initial block design of our search algorithm. Mixed designs are
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generated by combining a block design (our initial design) and an m-
sequence-based design via crossover (Step 2 of the search algorithm in
Subsection 3.3). This m-sequence-based design along with permuted
block designs and clustered m-sequences are generated from the pro-
gram provided by Liu (2004). For the permuted block designs, we
choose a block design with a block size of eight since other block sizes
do not seem to yield better results. As demonstrated in Liu (2004),
for Case I and A = 1/2, these designs provide an advantageous trade-
off between the two statistical objectives, estimation and detection.
Our designs provide a better trade-off, even for that special case. We
note that the designs considered by Liu (2004) have a fixed stimulus
frequency of 1/(Q +1). They can be good when A = 1/2 because this
is the optimal stimulus frequency for that case. However, when mov-
ing away from A = 1/2, these designs are sub-optimal. Our approach
finds much better designs as shown in Figure 4.

Table 5 presents means and standard deviations of the stimulus
frequencies of our designs, which are computed over the 21 designs
generated for each setting and the different stimulus types. Small
standard deviations show that the stimulus frequencies vary little over
the designs and the stimulus types. Again, these frequencies agree
with the approximated optimal stimulus frequencies in Table 1.

Table 5: Stimulus frequencies (mean and standard deviation) of our
designs?

A

Q@ 1 3/4 2/3 1/2 1/3 1/4 1/8 1/16 0
Case 1
2 0.302 0.318 0.324 0.339 0.360 0.370 0.400 0.425 0.494
(0.006)  (0.007)  (0.007)  (0.007)  (0.006)  (0.006)  (0.007)  (0.007)  (0.007)
3 0.218 0.234 0.242 0.253 0.267 0.276 0.292 0.302 0.330
(0.006)  (0.006)  (0.007)  (0.006)  (0.007)  (0.007)  (0.006)  (0.007)  (0.007)
4 0.169 0.187 0.192 0.201 0.210 0.216 0.226 0.232 0.249
(0.002)  (0.002)  (0.005)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)
Case II
2 0.298 0.316 0.323 0.338 0.360 0.373 0.400 0.426 0.495
(0.005)  (0.007)  (0.006)  (0.006)  (0.007)  (0.007)  (0.005)  (0.007)  (0.007)
3 0.218 0.234 0.242 0.253 0.267 0.276 0.292 0.303 0.330
(0.006)  (0.006)  (0.007)  (0.006)  (0.007)  (0.007)  (0.006)  (0.006)  (0.007)
4 0.169 0.187 0.192 0.202 0.211 0.216 0.226 0.233 0.249
(0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)  (0.003)

1 the mean and standard deviation are taken over the Q stimulus types and the 21 designs
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Figure 4: F*(&; A)-values versus Ff(&; A)-values of designs obtained for
Case I with @) = 2. e: designs found by our approach; *: m-sequence;
m: block design; ¢: clustered m-sequences; o: permuted block designs;

+: mixed designs;
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5 Discussion and conclusions

In this article, we study optimal ER-fMRI designs when both in-
dividual stimulus effects and pairwise contrasts are of interest. These
two interests are among the main concerns of fMRI researchers. There-
fore, when planning ER-fMRI designs, it is crucial to find designs that
are efficient for both interests.

Previous work either considers these two interests separately (Kao
et al., 2009) or assigns equal weights to them (Liu and Frank, 2004;
Liu, 2004). In contrast, we propose an approach for finding optimal
designs allowing user-specified weights.

In our numerical results, we find (near-)optimal designs for each A.
The stimulus frequencies in these designs increase when A\ decreases.
This also means that the frequency of the control decreases when
A decreases. This phenomenon is expected from the approximated
optimal stimulus frequencies derived by Liu and Frank (2004). Their
approximation is derived for white noise and with neither drift nor
trend, that is for our Case I. Our designs have stimulus frequencies
that are in good agreement with the approximated optimum, not only
for Case I but also for Case II.

Our numerical results show that the choice of A = 1/2 does not
necessarily yield a design that achieves similar relative efficiencies for
the two interests. The value of A that achieve this objective are,
approximately, A = 1/8 for @ =2, A = 1/4 for @ = 3, and A = 1/3
for ) = 4.

We also observe that designs for individual stimulus effects retain a
reasonable efficiency for pairwise contrasts and that they are relatively
robust with respect to a change in interests. On the other hand,
designs that are optimal for pairwise contrasts can have low efficiencies
for estimating individual stimulus effects. These designs should not
be used unless pairwise contrasts are the only concern.

Working with our defined MO-criteria, the search algorithm of Kao
et al. (2009) can be applied for finding multi-objective optimal designs
when both individual stimulus effects and pairwise contrasts are of in-
terest. For detecting activation, the algorithm yields designs with a
block structure. For estimating the HRF, we can find designs that
work much better than the m-sequence-based designs. When consid-
ering these statistical objectives simultaneously, we find designs that
provide advantageous trade-offs between the two competing objec-
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tives. The algorithm can accommodate user-specified weights for the
two objectives.

In addition to statistical objectives, Kao et al. (2009) also consider
psychological constraints, and customized requirements when finding
multi-objective optimal designs. It is straightforward to include these
additional objectives in our family of MO-criteria and the search algo-
rithm of Kao et al. (2009) can still be used for finding optimal designs.
However, for the sake of clarity, we have only focused on statistical
objectives in this study.
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