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Previous studies on event-related functional magnetic resonance imaging
experimental designs are primarily based on linear models, in which a known
shape of the hemodynamic response function (HRF) is assumed. However,
the HRF shape is usually uncertain at the design stage. To address this is-
sue, we consider a nonlinear model to accommodate a wide spectrum of fea-
sible HRF shapes, and propose efficient approaches for obtaining maximin
and maximin-efficient designs. Our approaches involve a reduction in the pa-
rameter space and a search algorithm that helps to efficiently search over a
restricted class of designs for good designs. The obtained designs are com-
pared with traditional designs widely used in practice. We also demonstrate
the usefulness of our approaches via a motivating example.

1. Introduction. Functional magnetic resonance imaging (fMRI) is a pi-
oneering, noninvasive brain mapping technology for studying brain functions
[Culham (2006), D’Esposito, Zarahn and Aguirre (1999)]. It is arguably one of the
most important advances in neuroscience and has many important clinical poten-
tials such as early identification of Alzheimer’s disease, pre-neurosurgical plan-
ning, and post-neurosurgical evaluations; see, Bookheimer (2007) and Wierenga
and Bondi (2007). This cutting-edge technology has been applied in a wide vari-
ety of disciplines [Lazar (2008), Lindquist (2008)].

In a typical fMRI experiment, a predetermined sequence of mental stimuli (e.g.,
pictures or sounds) is presented to a subject. While the subject is exposed to the
stimuli, an MR scanner repeatedly scans the subject’s brain to collect a blood
oxygenated level dependent (BOLD) time series from each brain voxel (three-
dimensional imaging unit). A study usually involves multiple (e.g., 64 x 64 x 30)
voxels, resulting in multiple time series. These time series reflect the MR signal
changes evoked by the underlying brain activity and are analyzed to make statisti-
cal inference about the inner workings of the brain. A crucial first step for rendering
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a valid and precise inference is to select a high quality experimental design for the
fMRI experiment.

Here, we focus on event-related (ER) fMRI designs with brief mental stim-
uli. Such designs are very popular due to their flexibility [Huettel (2012), Josephs
and Henson (1999)], and are the primary focus of existing research on fMRI de-
signs [e.g., Kao et al. (2009), Liu (2004), Maus et al. (2010b), Wager and Nichols
(2003)]. Current knowledge about the performance of ER-fMRI designs is mainly
based on general linear models. While popular, the use of general linear models
is criticized by some researchers [Handwerker, Ollinger and D’Esposito (2004),
Loh, Lindquist and Wager (2008), Worsley and Taylor (2006)]. A major criticism
is the assumption of a fixed, known shape of the hemodynamic response func-
tion (HRF), a function of time describing the noise-free MR signal change evoked
by one, single stimulus. This assumption is not always valid. Studies showed that
the HRF shape may vary across brain voxels, and that a misspecified shape can
lead to incorrect conclusions. To allow for uncertain HRF shapes, analysis meth-
ods such as the use of nonlinear models have been seen in the literature [e.g.,
Handwerker, Ollinger and D’Esposito (2004), Lindquist and Wager (2007), Miezin
et al. (2000)]. However, not much work has been done to address this important
issue at the design stage.

Kao (2009) investigated the performance of ER-fMRI designs under a nonlin-
ear model (Section 2.1) that can accommodate a wide variety of feasible HRF
shapes. With such a model, the optimality criterion for evaluating the performance
of designs typically depends on unknown model parameters. Kao (2009) assumed
the availability of a prior distribution of unknown parameters and put forward an
approach for obtaining designs optimizing a (pseudo-)Bayesian design criterion,
which is the expected value of the specific optimality criterion. Maus et al. (2012)
considered a maximin-type approach that focuses on the worst case scenario over a
prespecified parameter space containing possible values of the model parameters.
Specifically, they targeted designs that maximize the worst relative efficiency over
the parameter space. Here, a relative efficiency is the relative value of the specific
optimality criterion with respect to a locally optimal design that is optimal for a
given parameter vector value. Following Miiller (1995), the obtained designs will
be termed as maximin-efficient designs.

In contrast to maximin-efficient designs, maximin designs optimize the worst
value of the optimality criterion. In other words, the maximin criterion focuses
directly on the worst performance of designs over the parameter space, and the
maximin-efficient criterion can be viewed as a “weighted” version of maximin
criterion. The weights are determined by locally optimal designs or, more pre-
cisely, the best possible value of the optimality criterion evaluated at each parame-
ter vector value. Both criteria are considered in a wide variety of design problems
[e.g., Berger, King and Wong (2000), Berger and Wong (2009), Chen, Wong and
Li (2008), Huang and Lin (2006), King and Wong (2000), Silvey (1980), Sitter
(1992)]. Unfortunately, obtaining maximin-type designs optimizing these criteria
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is very challenging. One typically needs to deal with an optimization problem that
is mathematically intractable and computationally difficult, if not infeasible [Chen
et al. (2011), Dette, Haines and Imhof (2007)]. An efficient approach is thus cru-
cially important.

In this paper, we propose approaches for obtaining maximin and maximin-
efficient designs for fMRI experiments to allow uncertain HRF shapes. We derive
useful results and develop efficient strategies for obtaining high-quality designs.
Our strategies involve a reduced parameter space, a restricted class of ER-fMRI
designs, and an efficient search algorithm for searching over the restricted design
class for good designs. The usefulness of our approaches is demonstrated via case
studies and a real example.

We note that Maus et al. (2012) obtained D-optimal maximin-efficient designs
for one stimulus type. Here, we develop approaches for obtaining both maximin
and maximin-efficient designs, and apply our methods to find maximin-type de-
signs under A-optimality for cases with one or more stimulus types. D-optimal
designs help to control the volume of a confidence ellipsoid of the parameters. By
contrast, A-optimality aims at maximizing the average estimation precision. While
D-optimality is not uncommon in fMRI, the A-optimality criterion is widely ac-
cepted by researchers in the field [see also Dale (1999), Friston et al. (1999), Kao
et al. (2009), Maus et al. (2010b)]. We also note that our proposed methods can be
applied to all optimality criteria that are invariant under simultaneous permutation
of rows and columns of the information matrix. Both A- and D-optimality criteria
possess this invariance property.

The remainder of the article is organized as follows. In Section 2 we provide a
brief introduction about ER-fMRI designs. We then introduce our methods, includ-
ing the underlying statistical model, optimality criteria, and our proposed strategies
for obtaining maximin and maximin-efficient designs. Case studies and a real ex-
ample are provided in Section 3. The paper closes with a conclusion in Section 4.

2. Background and methodology.

2.1. A nonlinear model. An ER-fMRI design is a finite sequence of brief stim-
uli interlaced with control to be presented to an experimental subject. Each stim-
ulus may last several milliseconds to a few seconds. Times between consecutive
stimulus onsets are multiples of a prespecified time, called the inter stimulus in-
terval (ISI; e.g., 4 s). The control (e.g., periods of fixation or rest) fills in the time
when no stimulus is being presented. We may use a sequence of finite numbers, for
example, d = {101210- - - 1}, to represent an ER-fMRI design. An integer g (5 0)
at the kth position indicates an onset of a gth-type stimulus at time (k — 1)ISL.
A “0” means no stimulus onset at that time point.

At an activated brain voxel, each stimulus evokes a change in the MR signal
intensity. The signal intensity takes about 25 to 30 seconds to rise and decay. This
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F1G. 1. The HRF shapes g(t; p= (p1, Pe)) of (2.2) with, from left to right, (a) pe =0 and p1 =4
to 10 in steps of 2; and (b) p1 = 6 and pg =0 to 4 in steps of 1.

change is typically described by an HRF having an assumed shape with an un-
known amplitude (maximal height); see Figure 1 for some possible HRF shapes.
When the next stimulus occurs before the cessation of the current HRF, the evoked
HRFs accumulate. Along with nuisance signals and noise, the accumulated HRF
is acquired by an MR scanner every TR (time-to-repetition; e.g., 2 s) to form the
BOLD time series. Denoting the time series of a voxel by a T-by-1 vector y, we
consider the following nonlinear model:

0
Q.1 y=>_ Xq.h(p)o, +Sy +e.
g=1

Here, Q is the number of stimulus types. Xy ,h(p)6, represents the accumulated
HRF evoked by the gth-type stimuli of a design d. The scalar 6, is the unknown
HRF amplitude. The vector h(p), indexed by an unknown parameter vector p, de-
picts the heights of the HRF shape after every AT seconds following a stimulus
onset; AT is the greatest value making both (ISI/AT) and (TR/AT) integers.
Xy,q 1s the 0—1 design matrix with 1 indicating the heights of the HRF that con-
tribute to each BOLD measurement; a construction of X4 , can be found in the
Appendix of Kao, Mandal and Stufken (2012). The nuisance term Sy allows a
drift/trend over time with an unknown parameter vector y. The correlated noise
is represented by e. For detecting brain voxels activated by the stimuli, the focus
is typically on the amplitudes, 6 = (61, ..., 0¢p), which reflect the “strengths” of
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brain activation. A large 6,-value signals a voxel that is highly activated by the
gth-type stimuli, g =1, ..., Q.

With unknown p, model (2.1) allows for an uncertain HRF shape h(p). The
vector h(p) is determined by a continuous function g(¢; p) with ¢ representing time
elapsed after a stimulus onset. There are many choices for g(¢; p). Our selected
g(t; p) has the same form as the double-gamma function of SPM (http://www.
fil.ion.ucl.ac.uk/spm/), a popular computer software package for analyzing fMRI
data:

2.2) gip) = SR
max; go(s; p)

where
P1 P2
go(t;p) = f(t — D6, — p3) - psf(t — D6, — p4>;
P3 P4

xa—l e /B
f @ )=
I'(-) is the gamma function; and f(x, «, B) is the probability density function
of the gamma distribution, gamma(c, ). The double-gamma function of SPM
fixes (p1, p2,..., ps) = (6,16,1,1,1/6,0). This function is completely known
and is commonly used in the general linear model approach for describing the
HRF shape. By contrast, we allow an uncertain HRF shape and follow Wager
et al. (2005) to treat the two most influential HRF parameters, namely, p{, time-
to-peak, and pg, time-to-onset, as free parameters, while keeping the less sen-
sitive parameters (p2, p3, pa, p5) fixed at (16,1, 1,1/6). The HRF shapes with
selected (p1, ps)-values can be found in Figure 1. For brevity, we will omit the
fixed parameters p», p3, p4, and ps from p and write p = (p1, pe), although p
should really include six parameters. The jth element of the vector h(p) is then
g((j — 1) x (AT); p). The length of h(p) is set to 1 + [32/AT ] since a typical
HRF is nearly zero after 32 seconds; here, | a] is the integer part of a.

2.2. Optimality criteria. We aim at a good design for detecting activation (or
studying @) with model (2.1). The performance of a design will be evaluated by

1/ trace(Cov[?)]), the reciprocal of the average variance of the generalized least
squares estimators 9, that is, A-optimality. Following a popular technique [Box and
Lucas (1959), Fedorov and Hackl (1997)], we first linearize model (2.1) and then
use the linearized model to approximate Cov[f]. The approximated covariance
matrix is proportional to M-1d;0, p), where

M(d; 0, p) =Eq(p)'[Ir — w{La (8, p)}]|Ea(p),
Eq(p) = [Ir — w{VS}]VX4[Ip @ h(p)],
Ls(0,p) =[L1, Le],
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8h(p)} 0
opi

L; = [Ir — w{VS}]VX, [IQ ® i=1,6,

I, is the a-by-a identity matrix, w{A} = A(A’A)~A’ is the orthogonal projec-
tion matrix onto the column space of A, A~ is a generalized inverse matrix of A,
Xs =1[X41,...,Xqg,0], V is selected so that Ve is white noise, ® is the Kro-
necker product, and the vector (dh(p)/dp;) is determined by the partial derivative
of g(¢; p) with respectto p;,i =1,6.

We would like a design maximizing ® 4(d; 0, p) = 1/traceMM~'(d; 8, p)). The
answer will depend on the unknown @ and p. This makes such a nonlinear design
problem notoriously difficult. One way for tackling such a problem is by obtaining
a locally optimal design [Chernoff (1953)] that is optimal for a given (@, p)-value.
However, this approach is unsatisfactory for fMRI. This is because a good guess
for the parameter vector value is almost always unavailable. More importantly,
the selected design should be efficient for the various parameter values (or HRF
shapes) associated with all the brain voxels of interest. We thus resort to the max-
imin and maximin-efficient approaches.

The maximin approach seeks designs maximizing
(2.3) (eﬁpr)rggxp%(d, 0.p),
where ® x P is a specified parameter space of (f,p). A maximin design thus
maximizes the worst average precision in estimating 6 by taking the uncertainty
of both @ and p into account. On the other hand, the maximin-efficient criterion is

da(d; 0,
(2.4) min RE@:0.p)= min —A@0.P)
0,p)e®XP 0,p)e®OXP d)A(d;"p; 0.p)

where d;‘,p is a locally optimal design maximizing ® 4 for given (8, p). To reflect
that the HRF typically increases in 0-2 s after the stimulus onset, reaches the peak
in 5-8 s, and then falls back to baseline [Lindquist (2008), Rosen, Buckner and
Dale (1998)], we set P = {(p1, ps) | p1 € [6,9], pe € [0, 2]}. This choice also
follows the fact that the mode of the gamma distribution gamma (e, 1) is (o« — 1) for
a > 1. Other P can also be considered. With no further information, we consider
R€ as the parameter space of @, which can be greatly reduced using the results
presented in the next subsection.

2.3. Strategies to find maximin and maximin-efficient designs. Obtaining max-
imin or maximin-efficient ER-fMRI designs is computationally challenging. Re-
sults in this section help to reduce the computational burden. We first discuss re-
sults useful for the maximin approach. Some of these results can also be applied
to the maximin-efficient approach. Additional results that facilitate the maximin-
efficient approach are then described.
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LEMMA 1. M~'(d;0,p) <M~1(d;0,p) in Lowner ordering for any 0, p,
and a design d that ensures the existence of M~'(d; 0, p).

LEMMA 2. M(d; cf,p) =M(d; 0, p) for any scalar ¢ # 0.

The first lemma follows from Theorem 18.3.4 of Harville (1997), and allows
us to leave out 0 from the parameter space of § when obtaining maximin designs.
We note that the existence of M~!(d; 0, p) is guaranteed by the nonsingularity
of M(d; @, p). Lemma 2 is linked to an observation made by Bose and Stufken
(2007). It suggests that the ® 4-value depends on the direction of #, but not on
its length. Thus, when Q =1, ®4(d; 61, p) = Pa(d; 1, p) for any p and 67 # 0.
The parameter space can then be reduced to {1} x P from R x P. For Q > 1,
we represent 6 using the hyper-spherical coordinate system, and focus only on the
surface of the Q-dimensional unit hemisphere centered at the origin. Specifically,
for Q = 2, the parameter space of 6 can be reduced to ® = {(cos ¢y, singy) |
@1 € (—m/2,m/2]}. For O =3, ® = {(cos ¢y, sing| cos @y, sing singy) | ¢; €
(=m/2, /2]} can be used. For a larger Q, we have ® = {(61, ...,0¢p)}, where

qg—1
01 =cos¢y; 9q=cos<pq1_[sin<p,~, qg=2,...,0—1;
i=1
01
0o =[] singiso1.....00-1 € (—/2,7/2].
i=1
The two lemmas allow for a large reduction in the parameter space and facilitate
the search for maximin designs. To further decrease the computational cost, we
propose an efficient strategy using the following result.

LEMMA 3. Let G ={Gy,...,Gg} be a set of Q x Q permutation matrices.
Suppose Oy C O is such that ® = ngo Og, where @, = {G,0 | 0 € ©Op} and
Go =1p. If dvim,0, is a maximin design for ©g x P and ming,xp ® A (dmm,0,:
0.p = min@gxp D 4 (dMm,0,; 0, p) for any g, then dyim,e, is also a maximin de-
sign for ® x P.

A proof of Lemma 3 can be found in the Appendix. It is noteworthy that, al-
though we present Lemma 3 using @ 4, this lemma can be applied to any optimal-
ity criterion that is invariant under simultaneous permutation of rows and columns
of the information matrix M(d; @, p). Many commonly used optimality criteria,
including A- and D-optimality, satisfy this invariance property; see also Cheng
(1996). This lemma motivates the following strategy for obtaining maximin de-
signs:
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STRATEGY 1. (1) Identify a ®¢ and G; and (2) obtain a design dym,e, maxi-
mizing ming,xp ®a(d; 0, p), for which the ratio
_ ming, xp Pa(dvm,ey: 0, p)

ming,xp P (dvmm,e,; 0, p)

(2.5 Re
islforanyg=1,...,G.

If such a dmm o, exists, then it is a maximin design for the entire parameter
space. On the other hand, if R, < 1 for some g, calculating the minimal R still
provides a lower bound for the efficiency of dvim,@,. More precisely,

. . ming,xp Pa(dvm,0.; 0, p)
minR; < min -
8#0 ¢#0 mingyxp D 4(dvm: 0, p)
ming D 4 (d) 9; 0,

2.6) < min DO, xP A(dvm, 0, 0, p)

¢#0  mingxp P (dmm: 0, p)

_ minexp Pa(dvm,0; 0, p)
mingxp ® 4 (dvim; 0, p)

where dyvy 1S @ maximin design for ® x P. Note that the equality in (2.6) fol-
lows from the fact that ming,xp ® 4 (dmm,ey; €, p) = mine, xP P4 (dMm.e,; 0, P)
for any g, which can be proved by using Lemmas 5 and 6 in the Appendix. If
the minimal R, is close to 1, dmm,e, Will perform well in terms of the maximin
criterion (2.3).

We now turn to results that help to obtain maximin-efficient designs. To com-
pute the RE-value in (2.4), we need locally optimal designs for all (8, p) in the
parameter space. Obtaining these locally optimal designs is computationally de-
manding (or infeasible), especially when the parameter space is large. The follow-
ing results partly relieve this computational burden.

COROLLARY 1. A locally optimal design d;’pfor (8, p) is also a locally op-
timum design for (¢, p) for any ¢ # 0.

Corollary 1 follows from Lemma 2. We also have the following corollary that
allows for a reduction in the parameter space when obtaining maximin-efficient
designs.

COROLLARY 2. RE(d;0,p) =RE(d; 0, p) for any design d and ¢ # 0.

With this corollary, we may now reduce the parameter space to {{0} U ®} x P
with ® being the surface of the Q-dimensional unit hemisphere centered at the
origin. Similarly to Lemma 3, we make the following observation to help further
reduce the parameter space.
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LEMMA 4. A maximin-efficient design dyimg,e, for {{0} U ®¢} x P is also a
maximin-efficient design for ® x P if, for any g,

min _RE(d ;0,p)= min RE(d -0.p).
{{0}U®10}><73 (dvmE. 0 0, P) s (dMmE,09; 0. P)

With Lemma 4, a strategy similar to Strategy 1 can be considered for obtaining
maximin-efficient designs. Specifically, we may find a maximin-efficient design
for the reduced parameter space {{0} U ®¢} x P, and check if the minimal RE-
value of the obtained design is similar across all {{0}U®,} x P, ¢=0,1,...,G.
Unfortunately, this strategy, which works well for the maximin approach, may fail
to provide good maximin-efficient designs; see Section 3. A closer look reveals
that the RE-values and min-RE can be greatly changed after a permutation of the
coordinates of . This motivates us to consider another strategy suggested by Lem-
mas 3 and 4. The idea is to search for maximin-type designs over a restricted class
of designs for which the ® 4-values are (nearly) invariant to permutations of the
elements of #. The restricted design class Eg that we consider is described below.

With Q(> 1) stimulus types and a design length L, each design in the restricted
design class Eg is formed by a “short design” of length [L/Q7; [a] is the small-
est integer > a. The labels of stimulus types of the initial short design are cycli-
cally permuted to generate additional Q — 1 short designs. In particular, the la-
bel g in the current short design is replaced by g + 1 in the next short design,
g=1,...,0 —1; the label QO becomes 1, and 0’s are kept intact. A design of
length L is then achieved by concatenating the Q short designs and leaving out the
last (Q[L/Q7 — L) elements. The design class E¢ has also been considered by
Kao, Mandal and Stufken (2009). Here, we are able to show in the supplementary
document [Kao et al. (2013)] that, with a simplified model and two stimulus types
(Q =2), the ®4-values of designs in Eg are quite insensitive to permutations of
the elements of #. Based on our empirical results, this observation tends to remain
true for more realistic situations. We now describe our proposed second strategy.

STRATEGY 2. (1) Identify a ®¢ and G; and (2) obtain a design dmmE, e, that
maximizes mingo;ue,)xP RE(d; @, p) in the subclass E.

The results of our case studies indicate that good maximin-efficient designs can
be found by Strategy 2 with a greatly reduced computing time. We note that, by
considering the maximin criterion of (2.3) in Strategy 2, maximin designs can be
obtained over the subclass Eg. In the next subsection, we apply these strategies for
illustration.

3. Case studies and a real example.

3.1. Maximin designs. We consider three cases with (Q,L) = (1,255),
(2,242), and (3, 255). For each case, ISI is set to 4 s and TR is 2 s. Following
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Kao et al. (2009) and Liu (2004), a second-order polynomial drift in the BOLD
times series and an AR(1) noise with an autocorrelation coefficient p = 0.3 are
assumed. With these settings, we adapt the knowledge-based genetic algorithm
(GA) of Kao et al. (2009) to search for maximin designs; see the supplementary
document [Kao et al. (2013)] for the details of this GA. During the search, the min-
ima of ® 4 of candidate designs are evaluated over a grid on the specific parameter
space. The grid interval is 0.2 for p, and 0.1z for ¢;’s (and thus #). When com-
paring the obtained designs, finer grid intervals of 0.1 and 0.057 are considered
for p and 0, respectively. We implement our MATLAB programs on a desktop
computer with a 3.4 GHz Core 17-2600 processor. These programs are available
from the authors.

For Q =1, our GA search first targets a design maximizing minp ®4(d; 1, p).
Although we focus only on {1} x P, Lemmas 1 and 2 warrant that the ob-
tained maximin designs are for the entire parameter space R! x P. For Q =2
and 3, we follow the proposed strategies to first identify a subset ®p of ®
and a class of permutation matrices G. We recommend to include all the Q-by-
Q permutation matrices, except for the identity matrix, in G to allow a small
®p. We take ©g as {(cos¢i,sing) | ¢1 € [—7/4,w/4]} for Q = 2, and as
{(cos @1, Esing; cos @y, £singg singy) | @1 € [0, arccos(l/\/g)], @ € [k, /4]}
for O = 3; k = arccos(cos¢;/sing;) if ¢; > w/4, and « = 0, otherwise. We
note that', for these two cases, the ® defined after Lemma 2 can be written as
= UgQ:'B G);‘, where ®§ = {14,0G40 | 0 € Op}, and 7, ¢ is the sign of ((G,0))1,
the first element of G,40; we set 74 g to 1 when ((Gg0)); = 0. It is easy to see that,
by using Lemma 2, Lemma 3 still holds after replacing ®, with @:,.

With the selected ®¢ for Q > 1, the GA is applied to search for dyim,e, max-
imizing ming,xp ®4(d; 0, p). Both Strategies 1 and 2 are considered to reduce
computational burden. Specifically, following Strategy 1, we apply the GA to find
dvim, @, over the space E of all designs, and obtain the minimal R, in (2.5) as a
lower bound of the efficiency of the obtained design. We also use the GA to find
such a design over the restricted design class Eg (i.e., Strategy 2). For each case,
we generate ten designs by using different random seeds in the GA.

Table 1 presents the maximum, mean, and standard error of min-® 4 of the ten
GA-generated designs. The mean CPU time for obtaining these designs is also
reported. As in Table 1, our two strategies yield designs with similar min-® 4 val-
ues. In addition, the minimal R for the designs obtained with Strategy 1 is at least
98.78% for Q =2 and at least 97.99% for Q = 3, indicating that our obtained de-
signs are very efficient compared with a maximin design dyiy for ® x P. We also
note that a direct search for dyi, can be very time consuming for Q > 1. By focus-
ing on the reduced parameter space ®g x P, our proposed methods can efficiently
generate high quality designs. In addition, obtaining maximin designs over the
subclass Eq of designs can further reduce the computational burden without hav-
ing a negative effect on the design efficiencies. These results provide compelling
evidence for the efficiency and effectiveness of Strategy 2.
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TABLE 1

The performance and mean CPU time (in minutes) for dyim obtained over B (all designs) for
0 = 1; and dyim,®,, obtained over E and the subclass Eq for Q =2 and 3

0=1 0=2 0=3
= =2 29 = o)
min-® 4
Maximum 75.67 25.67 25.64 14.19 14.41
Mean 75.34 25.48 25.54 14.06 14.29
Std. err. 0.08 0.05 0.04 0.03 0.03
Mean CPU time 0.85 9.29 4.16 165.96 56.54

We also compare the obtained designs with some traditional designs that are
widely used in practice. Figure 2 presents the boxplots of the average estimation
precision ($ 4) over ® x P for the competing designs. In that figure, the selected
maximin design for Q = 1 is the design maximizing min-® 4 over the ten dyy, de-
signs obtained by the GA; for Q > 1, the selected designs maximize min-® 4 over
the ten dvim, @, designs obtained via Strategy 2. The traditional designs include
block designs, m-sequences, max-F;, max-F,, bi-objective, and random designs.
Block designs for fMRI are sequences formed by repetitions of {BoB1 B> --- Bg},
where By is a sequence of ¢’s (i.e., {gq - - - q}) of a given size. Here, we consider
block designs of size four that are formed by {00001111--- QQ QO Q}. Under lin-
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ear models, these designs can yield high performance for detecting brain activation
[Maus et al. (2011, 2010a), Henson (2007)]. An m-sequence can be generated from
primitive polynomials for a Galois field [Buracas and Boynton (2002), Godfrey
(1993), MacWilliams and Sloane (1977)]. These designs can be obtained from a
MATLAB program provided by Liu (2004) and are good for estimating the HRF.
The max-F,, max-F,, and bi-objective (0.5F; 4+ 0.5F,) designs are obtained by
the GA of Kao et al. (2009) with linear models. A max-F; design maximizes the
efficiency of detection, whereas a max-F, design maximizes the HRF estimation
efficiency. The bi-objective designs maximize the average of theses two efficien-
cies. They offer a compromise between the two competing objectives of detection
and estimation. We also generate 100 random designs and select the one yielding
the maximal min-® 4. When lacking design tools for sophisticated experimental
settings, as considered here, random designs are not uncommon in practice. More
details about these designs can be found in Kao et al. (2009) and Liu (2004).

The designs in Figure 2 are ordered by their min-®,4 values. Clearly, the
maximin designs are much better than the other designs and have relatively small
dispersions in ® 4-values across the parameter space. This indicates that the esti-
mation precisions yielded by the maximin designs are quite robust against a mis-
specified parameter vector value. We also observe that, while the block and max-
F, designs are recommended for detecting activation under linear models, they do
not perform well for detection under the nonlinear model. The ® 4-value of these
two types of designs can vary greatly over the parameter space, and, at the worst
cases, their ® 4-values can be very low, indicating poor precisions in estimating 6.

3.2. Maximin-efficient designs. Our proposed methods are also applied to ob-
tain maximin-efficient designs. For Q = 1, we first use the GA to search for the
required locally optimal designs for each grid point on {0, 1} x P, and then a de-
sign maximizing minyg,1}xp RE(d; 8, p). Based on Corollary 2, the GA actually
yields a maximin-efficient design dyimg for R! x P even though the reduced pa-
rameter space is considered. For Q = 2 and 3, we consider the ®¢ presented in
the previous subsection. We then apply the GA to search for (1) locally optimal
designs over {{0} U ®¢} x P; and (2) a maximin-efficient designs dmmg, e, Op-
timizing mingo;ue,)xP RE(d; @, p). The dvimg, e, designs are obtained over the
entire design space & (Strategy 1) and over the subclass Eq (Strategy 2).

Table 2, to be read as Table 1, presents a comparison among the obtained
maximin-efficient designs. By omitting the time needed for obtaining locally op-
timal designs, the CPU times in Table 2 for obtaining the maximin-efficient de-
signs are similar to those for maximin designs in Table 1. However, obtaining
maximin-efficient designs requires locally optimal designs. This unfortunately
makes maximin-efficient designs computationally much more expensive than max-
imin designs, especially when QO becomes large. Specifically, for O = 1, we use
the GA to obtain 352 locally optimal designs, each requiring about 2.88 s. The GA
takes about 4 hours to find 1232 locally optimal designs for Q = 2, and about 46



1952

KAO, MAJUMDAR, MANDAL AND STUFKEN

TABLE 2

The performance and mean CPU time (in minutes) for dyimg obtained over E (all designs) for
Q0 = 1; and dyimg, ©, obtained over E and the subclass Eq for Q =2 and 3

0=1 0=2 0=3
= = 20 = 20
min-RE
Maximum 0.835 0.790 0.829 0.797 0.829
Mean 0.830 0.783 0.820 0.783 0.823
Std. err. 0.001 0.002 0.002 0.003 0.001
Mean CPU time 0.88! 11.692 5.882 207.513 52.043

1 Additional 17 minutes are needed for finding the required locally optimal designs.

2 Additional 4 hours are needed for finding the required locally optimal designs.

3 Additional 46 hours are needed for finding the required locally optimal designs.

hours to generate 5984 locally optimal designs for O = 3. Results in Table 2 also
indicate that Strategy 2 outperforms Strategy 1 in terms of the achieved design
efficiency and required CPU time. Strategy 2 is thus recommended.

In Figure 3 we compare the RE-values over ® x P of the maximin-efficient
designs and the traditional designs introduced in the previous subsection. The
selected maximin-efficient design for Q = 1 maximizes min-RE over the ten
dvimg designs; the maximin-efficient designs for Q > 1 are selected from the ten
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dvimE, 0, designs obtained by Strategy 2. As presented in the figure, our designs
significantly outperform the traditional designs.

3.3. An example. In this subsection we consider an experimental setting em-
ployed by Miezin et al. (2000), in which a 1.5-s 8-Hz flickering checkerboard
(stimulus) is presented interlaced with a visual fixation (control). Upon the onset
of each checkerboard, subjects responded by pressing a key with their right hands.
The minimal time between consecutive stimulus onsets was 2.5 s (ISI = 2.5 s).
The BOLD time series was acquired every 2.5 s (TR = 2.5 s). The experimenters
presented the same design twice to a subject with a 2-minute rest period in between
the two runs. Each run lasted about 5.5 minutes. To allow an effective sampling
rate of the hemodynamic response, stimulus onsets were synchronized with MR
scans in the first run and were shifted 1.25 s in the second run.

Miezin and colleagues demonstrated that the time-to-peak (p;) and time-to-
onset (pe) of the HRF can vary across brain voxels. Taking this uncertainty into ac-
count, we apply our proposed approach to obtain maximin and maximin-efficient
designs. A simple modification is needed to accommodate the special requirement
that the study is conducted over two runs. Specifically, we replace the design ma-
trix in model (2.1) by diag(Xy.1, Xz,1) since the same sequence of stimuli is pre-
sented twice. In addition, h(p) is now (h;(p)’, hy(p)")’, where the jth element of
h;(p)is g(2.5(j —1); p) and that of hy(p) is g(1.254+2.5(j — 1); p). This accounts
for the difference of 1.25 s in the HRF sampling time points between the two runs.
We also consider the nuisance term [(Sy )", (Sy,)’] that allows run effects, where
Sy, corresponds to a second-order polynomial drift, i = 1, 2. The noise of the two
runs are assumed to be two independent AR(1) processes with autocorrelation co-
efficient p = 0.3. The whitening matrix thus has the form (I, ® V), where V is
a whitening matrix for each run [see also Kao, Mandal and Stufken (2009)]. We
also investigated the performance of our obtained designs when p = 0 or 0.5, and
found that our designs are still quite efficient with a different p-value.

In addition to maximin-type designs, we generate a block design, m-sequence-
based design, and 100 designs that are random permutations of a design con-
sisting of 50% “0”s and 50% “1”s. The block design is formed by repeating
{000000111111}, which has the 15s-off-15s-on pattern that is often recommended
for detecting brain activation. An m-sequence does not exist in this case. We thus
follow Liu (2004) to generate an m-sequence-based design by concatenating an
m-sequence of length 127 with its first 5 elements. The 100 randomly permuted
designs are constructed to mimic the design considered by Miezin et al. (2000).
Each of these 100 designs are selected so that the average time between consecu-
tive stimulus onsets is within 4.9 s and 5.1 s. Among these 100 designs, we select
the one yielding the maximal min-® 4 value when comparing with the maximin de-
sign, and the one maximizing min-RE when comparing with the maximin-efficient
design. Figure 4 provides summaries of the performances of these designs. As
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FIG. 4. Boxplots of the (a) ® 4-values, and (b) RE-values of the competing designs over {1} x P.

shown in the figure, our proposed methods consistently generate high-quality de-
signs that significantly outperform the traditional designs.

We also explore the performance of the designs with different p-values. When
p =0, the maximin design for p = 0.3 attains 95.1% of the min-® 4 value of the
maximin designs for p = 0.0. The min-RE value of maximin-efficient design for
p = 0.3 1is 98.1% of that of the maximin-efficient design for p = 0.0. For cases
where p is as large as p = 0.5, the relative min-® 4 of the maximin design for
p = 0.3 to the maximin design for p = 0.5 is 97.2%. For this same condition, the
maximin-efficient design for p = 0.3 retains 92.0% of the min-RE of the maximin-
efficient design for p = 0.5. Our obtained designs, especially the maximin designs,
perform relatively well when comparing with the best design for a p-value that is
as small as 0 and as high as 0.5.

4. Conclusions. We obtain high-quality experimental designs for fMRI ex-
periments to help to render efficient statistical inference on brain activity with a
nonlinear model. In contrast to linear models, the nonlinear model allows us to
detect brain voxels activated by the mental stimuli while the uncertain HRF shape
is taken into account. However, optimal designs for the nonlinear model depend
on unknown model parameters, making the design problem notoriously difficult.
To tackle this problem, we consider maximin and maximin-efficient designs and
propose efficient approaches for obtaining these designs. Our approaches involve
a large reduction in the parameter space, a restricted class of ER-fMRI designs,
and the use of the knowledge-based GA of Kao et al. (2009) for searching for
maximin-type designs. These approaches, especially Strategy 2, are demonstrated
to be powerful via case studies and a real example.

Maximin and maximin-efficient designs are widely accepted, although obtain-
ing them is almost always difficult. Pronzato and Walter (1988) studied both types
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of designs and concluded that maximin designs have definite advantages over
maximin-efficient designs when reducing the worst possible uncertainty for es-
timating the parameter is of concern. On the other hand, Dette and Biedermann
(2003) considered the maximin-efficient criterion because it tends to avoid plac-
ing too much attention on a certain parameter vector value. Huang and Lin (20006)
suggested that both maximin-type criteria deserve consideration; the selection may
thus be guided by the need and preference of the experimenter. Our approaches al-
low us to efficiently find both maximin and maximin-efficient designs, although
the latter designs are computationally more expensive than the former designs.

We also observe that, while blocked designs are recommended for detecting
brain activation under linear models, they are very poor for the same objective
under nonlinear models with uncertain HRF shapes. We believe that the inferiority
of block designs is mainly due to their low efficiencies in estimating the HRF [e.g.,
Liu and Frank (2004)]. The estimation of the HRF shape, although not the main
concern, is needed when the HRF shape is uncertain. A good design should thus
allow for a reasonable efficiency in performing this task. Designs with random
components tend to serve this purpose well.

The designs that we found are for a nonlinear model, in which the HRF
is approximated by 6h(p), the product of the unknown HRF amplitude 6 and
the uncertain HRF shape h(p). Such models are not uncommon in the litera-
ture [Handwerker, Ollinger and D’Esposito (2004), Lindquist and Wager (2007),
Miezin et al. (2000)]. While we focus on an h(p) having the same form as the pop-
ular double-gamma function of SPM, the proposed approaches can be extended
to h(p)’s of other forms, for example, the inverse logit function considered by
Lindquist and Wager (2007).

When implementing our approaches in the case studies, we consider an AR(1)
noise with known constant autocorrelation coefficient p = 0.3. This selection is
guided mainly by previous studies, for example, Lenoski et al. (2008) and Worsley
et al. (2002). From these studies, the use of AR(1) noise tends to provide satis-
factory analysis results. With AR(1), the results of Maus et al. (2010b) for linear
models suggest that the obtained designs for p = 0.3 do not suffer a significant loss
in design efficiency under other values of p € [0, 0.5]. We also observe a similar
outcome under the nonlinear model.

We also note that the assumed AR(1) model with p = 0.3 could be idealistic.
First, other models for autocorrelated noise might be more appropriate for some
data [e.g., Lindquist (2008)]. In addition, whether for an AR(1) model or another
model, knowledge about the unknown, possibly nonconstant parameter(s) may not
always be available at the design stage. For a selected model, our methods could
then be combined with the approach of Maus et al. (2010b) to search for optimal
designs (using the maximin or maximin-efficient criterion) by taking uncertain
HRF shape and autocorrelation parameters into account. While such a maximin-
type approach can be generalized to accommodate different models for autocor-
related noise, the design problem can become very challenging. Developing an
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efficient method for cases where both HRF shape and correlation are uncertain is
a topic of future research.

APPENDIX: A PROOF OF LEMMA 3

The following two lemmas are straightforward. Their proofs are thus omitted.
The notation used is as in Lemma 3.

LEMMA 5. For a permutation matrix Gy, let kg . (d) be the design obtained
by relabeling the stimulus types, the same way as Gg permutes (1,2, ..., Q), of a
design d. We have M(kg,(d); G40, p) = G:g,M(d; 0,p)Gy and, thus, @ 4 (kg, (d);
Gg0,p) =Da(d; 0,p) forany (6,p) € Og x P.

LEMMA 6. The following two conditions are equivalent: (1) d is a maximin
design for ©g x P; and (2) k¢, (dy) is a maximin design for © 4 x P for any g.

PROOF OF LEMMA 3. For a dvim,e, satisfying the conditions of Lemma 3,
we have ming,xp PakG,(dvm,ey); 0, p) = ming,xp Pa(dvm,ey;0,p) =
ming ¢ XP D 4 (dvim,0,; 0, p) for any g. Therefore, dyvim,e,, Which is a maximin
design for ®g x P, is also a maximin design for ®, x P for any g, and for
Usg®) x P=O xP. [
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SUPPLEMENTARY MATERIAL

Supplement to “Maximin and maximin-efficient event-related FMRI de-
signs under a nonlinear model”” (DOI: 10.1214/13-AOAS658SUPP; .pdf). We
provide (1) a proof that the ® 4-value of a design in the restricted design class Eg
is insensitive to permutations of the elements of #; and (2) a genetic algorithm for
obtaining ER-fMRI designs.
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