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ABSTRACT

Models with ordinal outcomes are an important part of generalized linear models and design
issues for them are less studied, especially when the model has discrete and continuous fac-
tors. We propose an effective and flexible Particle Swarm Optimization (PSO) algorithm for find-
ing locally D-optimal approximate designs for experiments with ordinal outcomes modeled
using the cumulative logit link. We apply our technique to obtain a locally D-optimal approxi-
mate design for an odor removal experiment with both discrete and continuous factors and
show that this design is superior to the design obtained by discretizing the continuous factor.
Additionally, we find a pseudo-Bayesian D-optimal approximate design for this problem and
study the performance of both designs under a range of plausible parameter values. We also
(i) demonstrate PSO's versatility by finding locally D-optimal approximate designs for a manu-
facturing example with surface defects and multiple continuous factors, and (i) use PSO to
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find other optimal designs for estimating percentiles in a dose-response study.

1. Introduction

This work concerns experiments conducted to determine
the effect of a set of factors on a categorical outcome
with ] ordered levels. For example, the quality of a man-
ufactured product might be classified as “low,”
“medium,” or “high,” and the experimenter may be
interested to learn what process settings will increase the
probability of having a “high” quality product. Similarly,
in a healthcare study, a patient’s response after an inter-
vention may be classified as “no improvement,” “some
improvement,” or “significant improvement.” The out-
comes of such ordinal response experiments are often
modeled using cumulative logit models, which is a form
of generalized linear model.

Analysis of experimental data using cumulative
logit models is well described (Agresti 2003). In par-
ticular, the ordinal categories are modeled using a
continuous latent variable, Z, and the probability of
the response falling into each category depends on the
value z of the latent variable through cut-points, with
the jth cut-point denoted by 0;. For a model with J
outcome categories, there will be J—1 cut-points. For
example, Figure 1 displays the latent continuous factor

for an experiment with a three-level response: a, b,
and c. If z < 0;, outcome a is observed, if 6; <z <
0, outcome b is observed, and if z > 6, outcome c is
observed. It is important to note that these cut-points
are not determined by the experimenter, and thus
©® ={0;,...0,_1}" must be treated as a vector of
parameters to be estimated.

This modeling strategy has a rich history and is
used in a variety of settings including healthcare
(Clark et al. 2000; Lall et al. 2002) and industrial
experiments (Nair 1986). However, optimal design for
experiments with ordered outcomes is not well
studied. The design problem is to determine the set of
optimal experimental settings that most efficiently
estimate the model parameters, or some function of
the model parameters. The efficiency of the estimation
is measured as a function of the “size” of the Fisher
Information matrix. For example, D-optimality seeks
to maximize the logarithm of the determinant of the
Fisher Information matrix, and the resulting D-opti-
mal design minimizes the volume of the confidence
ellipsoid of the model parameters.

There is much research on addressing design issues
for generalized linear models. Atkinson and Woods
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Figure 1. An example of the latent variable and cut-points for
a cumulative logit model with a three-level outcome. The x-
axis shows the values of Z and the y-axis is the corresponding
density of Z at these values. The cut-points 0, and 0, are
marked with red lines.

(2015) provides an overview. For example, Russell et al.
(2009) constructs optimal designs for Poisson regression
models. In the binary response case, Yang, Mandal, and
Majumdar (2012) describes techniques for obtaining
locally D-optimal designs for experiments with two fac-
tors, and Yang, Mandal, and Majumdar (2016) extends
this technique to experiments with an arbitrary number
of discrete factors. Dette (2004) discusses designs for
risk estimation that are robust to assumed success rates,
and Wu, Wong, and Crespi (2017) discusses optimal
design for cluster randomized trials with binary out-
comes. Xu et al. (2019) uses differential evolution to
find designs for logistic regression models with multiple
interacting factors.

Optimal design results for models with a categor-
ical outcome with several levels are more scarce.
Zocchi and Atkinson (1999) considered D-optimal
designs for experiments with a continuous factor in
the model. Perevozskaya, Rosenberger, and Haines
(2003) studied optimal design problems for quantile
estimation, and is an example for finding an optimal
design to estimate a function of the model parameters.
Recently, Yang, Tong, and Mandal (2018) developed a
technique for cumulative logit models with the restric-
tion that all factors in the model are discrete.

Our main goals are to develop and implement an
effective and flexible algorithm for practitioners to gen-
erate new D-optimal designs with outcomes modeled
using cumulative logit models with both discrete and
continuous factors, henceforth referred to as experiments
with “mixed factors.” For such experiments, a common
practice is to either discretize the range of the continu-
ous factors and use methodology for designing experi-
ments with all discrete factors, or to fix the continuous

Table 1. The five factors in the odor removal experiment,
with four discrete and one continuous factor.

Levels
Type Factor - +
Discrete Algae Catfish Algae Solix Microalgae
Discrete Scavenger Activated Carbon Zeolite
Discrete Resin Polyethylene Polypropylene
Discrete Compatibilizer Absent Present
Continuous Temperature 5Ct035C

factor at a particular setting for the experiment. The for-
mer strategy can be computationally inefficient, as the
algorithm will become slow when the number of con-
tinuous factors grows. The latter is clearly undesirable as
it does not capture information about responses at other
settings of the continuous factor or factors.

Our work on mixed factor experiments with ordinal
response is motivated by a bio-plastics experiment car-
ried out at the University of Georgia (Wang et al. 2017).
The investigators were interested in the effects of several
factors on whether or not a manufactured bio-plastic
emitted an odor. The factors of interest are listed in
Table 1. The ordinal outcome had five levels: almost no
odor, mild odor, medium odor, strong odor, and serious
odor. The original experiment considered only the dis-
crete factors in Table 1 and held the continuous variable
temperature fixed at 25°C without explanation. We
revisit this experiment and generate designs that more
realistically include all factors of interest in the study.

Our approach to designing experiments with mixed
factors is not to discretize the continuous factors. We
propose a Particle Swarm Optimization (PSO) algorithm
for finding D-optimal approximate designs for experi-
ments with ordinal response modeled using a cumula-
tive logit model. Section 2 provides background and
discusses the form of the Fisher information matrix for
cumulative logit models. Section 3 describes the PSO
algorithm for generating D-optimal approximate designs
for experiments with mixed factors. In Section 4 we use
PSO and generate a locally D-optimal approximate
design for the odor removal study that includes tem-
perature as a continuous variable and investigate its
robustness properties to mis-specification in the model
parameter associated with the temperature variable. We
further use PSO to generate a pseudo-Bayesian approxi-
mate design for this problem, and compare the perform-
ance of the locally D-optimal and pseudo-Bayesian
designs to a range of plausible parameter values.
Additionally, Section 5 uses PSO to generate a locally D-
optimal approximate design for a surface defects experi-
ment with a large number of continuous factors. We
conclude in Section 6 with comments on future direc-
tions. In the Supplementary Materials, we demonstrate
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another application of PSO to find other types of opti-
mal designs for a dose-response model with ordinal out-
comes and show some of the optimal designs published
earlier were not really optimal. General Julia codes for
finding designs for experiments with ordered categorical
outcomes are provided as a Supplementary Material
including markdown files that reproduce all analyses
from the paper. The Julia language was chosen due to
its fast computation speed and ease of use. All reported
computation times were obtained using a 2020 iMac
(3.2 GHz 6-Core Intel Core i7 processor).

2. Notation and design background

Consider an experiment with response Y having J
ordered categories, K factors in the model, p regression
parameters, and analyzed using a cumulative logit model
(Agresti 2003). Here we have N available experimental
units which can be distributed across L support points
(L <N), where L is wuser-defined. Define
{x,-,l,x,',z,...xi,K,x,-,KH, ...,Xi’p}T for i= 1, ...,L, where
the first K components represent experimental settings
for the K factors (ie. the support points), and the
remaining values for x; are determined from the levels
of the K factors based on the postulated interactions in
the model. The experimental design is the collection of
the support points, along with the number of replicates
at each support point. If the ith support point has n;
replicates, we have that ZI.L:I n; = N. The design space
is the set of all possible combinations of factor settings
and given an objective function, the goal is to determine
the optimal support points and n;, i=1,...,L. The
resulting design is known as an optimal exact design, or
strictly speaking an L-point optimal exact design.
Finding an optimal exact design analytically is very
challenging, and numerical searches can be prohibi-
tively computationally demanding, especially when the
model has many interacting factors. An alternative

X; =
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option is to find an approximate design (Kiefer 1959),
where the optimal proportion (w;) of experimental
units at the support point x; is found instead of the
optimal number of replicates. If there are L support
points, the weights wy, ..., wy, sum to unity. In practice,
an approximate design is implemented by taking N,
observations at the ith support point, and N,, is
obtained by rounding each N,,, to the nearest integer,
subject to the constraint that N, ..., N,,, sum to N.
The worth of a model-based design is measured by
the Fisher information matrix for the parameters @ =
{BT.07}", where 0 is the vector of cut-points and
is the vector of p coefficients in the linear predictor of
the generalized linear model. Here we make the com-
mon proportional odds assumption that this set of p
coefficients is the same across different outcome cate-
gories. Let the linear predictor for the jth outcome at
X; be nij = 0; —xiTﬁ,i =1,..,Lj=1,...,]— 1. In the
cumulative logit model, we model the probability that
the outcome Y; falls into category j or below as
P(Y; <j)=g(n;;), where g(-) is the logistic link
function. The inverse link function is gl-,’j1 =
exp (1;;)/(1 + exp (1;;)), and the probability that
observation i falls into category j is m;; = gi)‘j1 - gi,‘J.LI.
We represent the ith point, i = 1,..., L as

—Xi,1 X1 —Xi,1
—Xi2  TXi2 —Xi,2
X; — | TXp TXip ~Xip (1)
(p+=1)x(-1) 1 o .. 0
0 1 0
| O 0 0 I

This representation is chosen so that X/® =y,
the J—1 dimensional vector of linear predictors for
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the ith support point. Next, we define W;, a tri-diag-
onal matrix for each support point in Eq. [2].

Using these two definitions, the Fisher Information
matrix for a design ¢ is

L
I50(¢) =) wXWiX, (3)
i=1
(Yang, Tong, and Mandal 2018). The Fisher informa-
tion matrix depends on the parameter vector @
through the inverse of the link function.
Consequently, the optimal design depends on the
parameters we wish to estimate and we have a circular
problem: an accurate set of parameters is required to
obtain an optimal design that can accurately estimate
the set of parameters.

There are several common solutions to this prob-
lem, each posing a different set of difficulties. First, in
the event that a best guess for the parameters is
already known, say, from a pilot experiment, then this
best guess can be used to generate the design. This
best guess is referred to as the set of nominal values
for the parameters, and the resulting design is known
as a locally optimal design (Chernoff 1953). Such
designs can be quite efficient if the set of nominal val-
ues is close to the true parameter values, but robust-
ness studies should be undertaken to examine the
sensitivity of the optimal design to the set of nominal
values before implementing an approximate design. If
the performance of the locally optimal design is poor
and there is uncertainty in the parameter values,
maximin optimal designs provide alternative design
strategies (Chen et al. 2015, 2017; Wu, Wong, and
Crespi 2017). These approaches assume there is a
plausible set containing all possible values for the
unknown, true parameters of interest, and the optimal
design seeks to maximize the minimal gain arising
from mis-specification of the nominal values from the
plausible set.

Alternatively, the experimenter can elicit a prior
distribution on the parameter vector and generate a
Bayesian D-optimal design. A Bayesian D-optimal
design maximizes the logarithm of the determinant of
the Fisher information averaged over a user-selected
prior distribution for the parameters. This option can
be unattractive in practice because the numerical inte-
gration involved is frequently costly in terms of com-
putation time. Less computationally intensive methods
have been proposed to approximate the expected
Fisher information, including work by Gotwalt, Jones,
and Steinberg (2009) and Overstall and Woods
(2017), and other methods such as compromise
designs (Woods et al. 2006) may also be used.

The pilot study by Wang et al. (2017) provides us
with a set of nominal values for the odor removal
experiment, which we can use to generate a locally D-
optimal design. The caveat is that a nominal value for
the coefficient of the temperature variable is still
required since this variable was set to a fixed value in
the earlier study. Accordingly we make a sensible
guess for its value and ascertain whether the locally
D-optimal design is sensitive to its mis-specification.
Section 4.2 shows the efficiency of a locally D-optimal
design can be seriously reduced if this guess is dra-
matically different from the true value.

We compare the performance of one design relative
to another using the D-efficiency. For two designs, &;
and ¢,, the D-efficiency of &, relative to &, is

~[det{Igo(&1)} T
effp(é1, ) = (m) W

If the D-efficiency of design &; relative to another
design &, is 1/3, then the design &; requires three
times as many observations to do as well as &, in
terms of estimating the model parameters. If &, is a
locally D-optimal approximate design, then the ratio
is the D-efficiency relative to the locally D-optimal
approximate design.

Sensitivity functions allow us to evaluate the opti-
mality of an approximate design when the design cri-
terion is a concave or convex function on the space of
all approximate designs. Atkinson and Woods (2015)
provides examples of use of sensitivity functions for
nonlinear models. For our models and D-optimality,
it can be shown that the sensitivity function for the
design expressed in terms of the X;’s in (1) is given
by

-1
L

r| WX IS wXIWX b X | —(p+T-1)

=1

(5)
(Perevozskaya, Rosenberger, and Haines 2003). If the
sensitivity function in (5) is less than or equal to 0 for
all possible X;, with equality at the support points of
the design, the design is a locally D-optimal approxi-
mate design. Such reasoning is based on the equiva-
lence theorem for a convex functional and is derived
by studying the directional derivative of a convex
functional, see for example, Fedorov (1972) or Silvey
(1980). The major use of the equivalence theorem is
to confirm optimality of an approximate design
among all possible designs on the user selected com-
pact design space.
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Figure 2. Diagram of the steps in the PSO algorithm. The sub-steps of the “Check Convergence” step are enlarged and presented

in the red box.

If the design does not satisfy the equivalence the-
orem (i.e. there is a X; in the design space such that
the sensitivity function is positive), the current design
is not locally D-optimal. In this case, its proximity to
the unknown optimum can be measured via a lower
bound on the D-efficiency of the design relative to the
theoretical locally D-optimal approximate design.
Specifically, let 6 be the maximum positive value of
the sensitivity function across the design space. A
lower bound on the D-efficiency of the design ¢ is
given by exp{—d/(p+J—1)} (Pdzman 1986), and
we use this lower bound as one of the stopping crite-
ria in our algorithm.

3. Particle swarm optimization

PSO is an optimization approach based on the behav-
ior of a flock of birds searching an area for a food
source, where the quality of the food source corre-
sponds to the fitness of the solution (Eberhart and
Kennedy 1995). The key idea is that as the flock of
birds searches an area, each bird has some idea of
where the best food source is based on its own previ-
ous experience in the field (cognitive knowledge).
This position is known as the pbest position and the
corresponding  fitness is denoted the pbest.
Additionally, each bird has some idea of where the
best food source is based on the behavior of the other
birds (social knowledge); if many birds have selected a
location then it is likely that there is a good food sup-
ply at that location. The overall best position found
by any bird is known as the gbest position, with its fit-
ness labeled the gbest.

In PSO, birds are drawn to both their pbest pos-
ition and the gbest position at each iteration, and they
“fly” through the search space at a velocity determined

by their distance from these two positions. In doing
so, the birds get the chance to explore many new sol-
utions between the pbest and gbest positions, hopefully
identifying better solutions. Some of the most appeal-
ing features of PSO are that it is virtually assumption
free, flexible, and easy to use. For example, the behav-
ior of the swarm is governed by two simple equations:
the velocity update and the position update equations.
As such, the PSO algorithm and its many variants
have been widely applied to many types of optimiza-
tion problems in engineering and computer science
research, and increasingly in many other disciplines.

PSO has become popular in recent years due to its
ease of implementation and its ability to find high qual-
ity solutions for complicated optimization problems.
Variants of PSO have been applied to solve a number of
optimal design problems (Wong et al. 2015; Lee et al.
2018; Chen et al. 2015). However, to our knowledge,
this is the first work to use a nature-inspired metaheur-
istic algorithm to find designs for experiments with
mixed factors and ordinal outcomes modeled using a
cumulative logit link function. We selected PSO to find
optimal designs not only because of its speed and fre-
quent successes in generating quality solutions to com-
plication optimization problems, but also for its ability
to search a continuous search space without requiring
the space to be discritized. The latter capability is espe-
cially useful for finding locally D-optimal approximate
designs for experiments with mixed factors.

We now describe our PSO algorithm, schematically
depicted in Figure 2, for obtaining D-optimal approxi-
mate designs for experiments with ordinal response
modeled under a cumulative logit model. To ease the
exposition, we assume that all discrete factors have
two levels as in the odor removal experiment.
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Step 0: Initialization: The swarm is initialized with
s particles, &y, ..., &, where each particle is a candidate
design, and s is user-determined. The initialization is
random, thus random factor settings and proportions
allocated to each support point are generated for each
particle, where the starting proportions are normalized
to sum to unity. Because each particle is a design, we
can calculate the log determinant of the Fisher infor-
mation matrix for each particle. This value is the start-
ing fitness, as well as the starting pbest fitness. The
initial gbest fitness is the maximum of all pbest fitness
values. The initial velocity is set to 0 for all positions.

Step 1: Update velocity: The velocity for particle i
at position k, v; x,k = 1,...,K is updated at iteration ¢
according to:

v = )+ Ui (Gt — €5 )
+ UZ(bs(fk,gbest - ff-f;:l)), (6)

where U;, U, are independent random draws from a
continuous Uniform(0, 1) distribution, ¢, is the iner-
tia factor, and ¢, and ¢, are the cognitive and social
learning factors, respectively. We take ¢. = ¢, =2 as
is common in the literature (Eberhart and Kennedy
1995). Using these settings allows the particle’s own
experience to have equal weight to the global best.
The inertia factor is slowly reduced from 1 to 0.4 over
the course of the iterations. After the velocity update,
any velocity that exceeds the width of a factor’s range
is set to be equal to that width. For example, if a fac-
tor can take values in [—2,2], and a particle’s velocity
for a setting of that factor is 5, then the velocity will
be trimmed down to 4 (Eberhart and Shi 2000).

Step 2: Update position: The position update is
performed differently for discrete factors and continu-
ous factors. If k indexes a continuous factor or a pro-
portion of experimental units assigned to a support
point, then the position is updated as:

et = el ol 2

and any positions exceeding the factor’s boundaries
are set to the boundary. For example, in the odor
removal experiment, if Eq. [7] results in a temperature
value of 40, that value will instead be set to 35 and
the velocity will be reduced accordingly. The propor-
tions are normalized to sum to unity, and proportions
that are equal to zero correspond to unused support
points. This means that PSO can find designs with
fewer than L support points.

The discrete factors are updated one support point
at a time using Hamming distance as described by Xi
et al. (2016). For each support point, a reference

point, x,, is created using crossover from the pbest
and the gbest positions. For a randomly selected cross-
over point, all settings to the left of the crossover
point come from the particle’s pbest position for that
support point. The setting at the crossover point and
all factors to its right come from the gbest discrete
factor settings for that support point. The crossover
point is obtained using a randomly drawn index.

After this reference support point is created, we
count the number of elements that are different
between the particle’s position and the reference
point. The probability of a factor changing setting
(e.g. from —1 to 1) is then taken to be the ratio of the
number of different elements to the total number of
discrete factors. Under this updating scheme, discrete
factor settings that are identical to the reference point
do not change at all. On the other hand, if the dis-
crete factor settings of a support point do differ from
the reference point, then each discrete factor setting
for that support point has equal probability of chang-
ing, regardless of whether the individual point was
equal to the reference setting.

Step 3: Elitist breeding: Elitist breeding for PSO
was first suggested by Yang, Wu, and Min (2015) as a
technique for encouraging exploration of the search
space by “breeding” current solutions with other, bet-
ter solutions. It was applied to PSO for finding locally
D-optimal designs by Lukemire, Mandal, and Wong
(2019) and is used here in a similar manner. In our
implementation, for each particle, each support point
has probability 1/3 of breeding at each iteration. If a
support point is selected for breeding, then it is
replaced by a randomly selected support point from
that particle’s pbest position with probability 1/2, or
from the gbest position with probability 1/2. This
operation helps to prevent the swarm from becoming
stuck in a local maxima, and it also acts to slow the
swarm from converging prematurely. We address this
problem via our convergence criteria described below.

Step 4: Calculate fitness: At iteration ¢, if a locally
D-optimal design is sought then a particle’s fitness is
the logarithm of the determinant of the Fisher infor-
mation matrix for the design given by its position.
Alternatively, if a pseudo-Bayesian design is sought,
the fitness is the approximation to the expected loga-
rithm of the determinant of the Fisher information as
described in Gotwalt, Jones, and Steinberg (2009).

Steps 5-6: Update bests: For each particle, if the
fitness at iteration ¢ is greater than that particle’s pbest
from the last t—1 iterations, then the pbest fitness is
updated to the new fitness and the pbest position is
changed to the particle’s current position. Similarly,



the gbest fitness and position at iteration ¢ are taken
to be the best of all pbests at iteration t.

Step 7: Check convergence: Eq. [6] implies that as
all of the particles approach the same position, their
velocities will go to zero. Therefore we can measure con-
vergence of the swarm by detecting when all of the par-
ticles have stopped moving. However, because we have
implemented the elitist breeding mutation, it is likely
that at least a few particles will always have non-zero
velocity due to the breeding mechanism replacing some
of their support points. This leads us to instead measure
convergence by looking at the ratio of the smallest pbest
fitness to the gbest fitness. If this ratio is larger than
0.995 then we say the swam has converged and proceed
to verify the local D-optimality of the gbest design using
the sensitivity function.

Our PSO codes also check the sensitivity function
(Eq. [5]) for the gbest position using a grid search
over the continuous factor settings for each possible
combination of discrete factor settings. If the design is
locally D-optimal, then the value of the sensitivity
function will be 0 at the support points and less than
0 elsewhere in the design space. We calculate the
maximum value of the sensitivity function for the
gbest position and obtain a lower bound of the effi-
ciency relative to the locally D-optimal approximate
design as described in Section 2. If this lower bound
is greater than ¢, then we say that the swarm has con-
verged to the locally D-optimal approximate design
and terminate the search. Note that when searching
for pseudo-Bayesian designs this stopping criteria is
not used, and instead the user-specified maximum
number of iterations is used.

If the sensitivity function check fails, then the gbest
results are set aside and the swarm is reset (re-initial-
ized) in hopes that the new positions will allow the
swarm to search a new part of the search space. The
re-initialized swarm is not “aware” of the previous
gbest results until it converges, at which point the old
gbest is reintroduced and the swarm is allowed to con-
verge again, this time with knowledge of the old gbest.
The swarm terminates when the locally D-optimal
design has been found or when the maximum number
of iterations has been reached, and the gbest design

JOURNAL OF QUALITY TECHNOLOGY 7

found by the swarm across all re-initializations is
returned as the PSO-generated approximate design.
Like all meta-heuristic algorithms, an important
consideration is the choice of tuning parameters.
Tuning the PSO algorithm requires choosing the
number of particles, the number of support points,
the maximum number of iterations (maxit), and the
lower bound, €, required to terminate the algorithm.
In our experience, we have found that generally 10-20
particles works well. For the number of support
points, we have found that setting L =2 x (p+] — 1)
is generally adequate. PSO may generate a design with
fewer than L support points by setting some of the
weights to 0. We recommend using a maximum of
20,000-50,000 iterations as a starting point for more
complicated designs and then increasing this number
as needed. For our purposes we generally set € =
0.99, however this is rather strict and can be relaxed
if the algorithm fails to find a locally D-optimal
approximate design. Recall that this value is a lower
bound, and in practice the efficiency of the PSO-gen-
erated design relative to the locally D-optimal
approximate design might be significantly higher.

4, Odor removal experiment
4.1. Locally D-optimal approximate design

In this section, we obtain a locally D-optimal approxi-
mate design for the odor removal experiment that
motivated this work. The nominal values for the dis-
crete factors and the cutpoints are taken from Wang
et al. (2017) and are displayed in Table 2. As discussed
earlier, temperature was not studied in the original
experiment, thus we must select a reasonable value. We
take the nominal value for the temperature effect to be
0.2, as we expect that a warmer storage temperature
will result in a stronger odor in the final product.

We used PSO with 20 particles and the nominal
parameter values in Table 2 to search for a locally D-
optimal approximate design with up to L =20 support
points. We set € = 0.99, meaning that if the generated
design has a minimum D-efficiency of 99 percent, we
will treat the design as optimal in practice.

Table 2. The nominal values used in obtaining a locally D-optimal approximate design for the odor removal
experiment, and the independent priors used for the pseudo-Bayesian D-optimal approximate design. U indi-

cates a uniform distribution.

Parameter Nominal Value Prior Outcome Cutpoint Nominal Value Prior
Algae 2.890 u(1.5, 3.0) (@ —4.270 U(-5.0, —4.0)
Scavenger 0.841 U(0.25, 1.75) 0, 0.362 u(0.0, 1.0)
Resin —1.476 U(-2.0, —0.5) 03 3.309 U(3.0, 4.0)
Compatibilizer —0.024 U(-0.75, 0.75) 04 5451 U(5.0, 6.0)
Temperature 0.200 U(-1.0, 1.5)
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Alternatively, we can also run the algorithm up to
20,000 iterations as another stopping criterion. Table 3
displays the 13 point PSO-generated locally D-optimal
approximate design for estimating all nine parameters
in the model. This design was generated in a little
under 10seconds. The determinant of the Fisher infor-
mation matrix is 1.51 x 107°. Figure 3 plots the sensi-
tivity function for each combination of discrete factor
settings, and the graph confirms the local D-optimality
of the design.

Table 3 illustrates several important aspects of the
optimal design with mixed factors. First, the locally
D-optimal design can be generated using only 13
points. This is advantageous because in practice it can
be quite costly to change design settings. Second, the
smallest proportion allocated to a support point is
0.03, or roughly 3 percent. The larger the proportion
assigned to each support point, the easier it is to
implement the approximate design; otherwise alloca-
tion proportions with extremely small values will
require large sample sizes to implement. Most import-
antly, many of the optimal continuous factor settings
do not require values at either extreme of the tem-
perature range. These points could easily be missed if
the design space was discritized using a coarse grid.

Another popular approach for finding locally D-
optimal designs is the coordinate exchange algorithm
(Meyer and Nachtsheim 1995; Gotwalt, Jones, and
Steinberg 2009), and hence we use it as a baseline for
comparing with PSO. This algorithm performs a
greedy search, cycling through each factor setting for
each design point and finding the optimal setting.
Apart from being intuitive and easy to follow, another
advantage of this approach is that it is very fast, and
thus it can be used to quickly find designs. The down-
side is that it is quite vulnerable to getting stuck in local
minima. To demonstrate, we use the coordinate
exchange algorithm to attempt to find a design for the
odor removal experiment. We consider designs of size
12-18 points, and for each design size we run the
coordinate exchange algorithm using 1000 different
starting designs, as recommended in Goos and Jones
(2011). The best and average determinants of the Fisher
information matrix across the 1000 starting designs are
listed in Table 4. From the results, it is clear that the
coordinate exchange algorithm is not able to find
designs that are as efficient as those from PSO.

4.2. Robustness to mis-specification in the effect
of storage temperature

The nominal parameter values for the discrete factor
settings and cut-points were based on a pilot study.

Table 3. The 13-point PSO-generated locally D-optimal
approximate design for the odor removal experiment. The
determinant of the Fisher information matrix for this design
is 1.51 x 107°.

Algae Scav. Resin Comp. Temp. w;
-1.0 -1.0 1.0 -1.0 5.0 0.06

1.0 1.0 1.0 1.0 14.78 0.08

1.0 -1.0 —-1.0 -1.0 5.0 0.12
—-1.0 —-1.0 —-1.0 1.0 35.0 0.12

1.0 1.0 1.0 -1.0 5.08 0.05
—-1.0 1.0 —-1.0 1.0 5.0 0.10
-1.0 -1.0 1.0 -1.0 30.07 0.10
—-1.0 1.0 1.0 1.0 35.0 0.04
-1.0 1.0 1.0 -1.0 35.0 0.07
—-1.0 1.0 —-1.0 —-1.0 5.0 0.06
-1.0 1.0 —-1.0 -1.0 30.03 0.03

1.0 —-1.0 1.0 1.0 5.0 0.10
-1.0 -1.0 1.0 1.0 5.0 0.07

However, we did not have an estimate for the effect
of storage temperature from the pilot study (fs).
Consequently, we should be most worried that our
nominal value for this parameter will be incorrect. In
this subsection, we examine the robustness of our
design in Table 3, designated ¢,, to mis-specification
in the effect of storage temperature. We do this by
varying the true value for the effect of storage tem-
perature, generating locally D-optimal designs under
the true value, and examining the D-efficiency of our
design in Table 3 relative the locally D-optimal design
for each considered value of fi5 using (5).

We first assume ffs € [0,1] and divide the interval
into 100 equally spaced points. For each of these val-
ues of fi5, we use PSO with 20 particles to search for
a locally D-optimal approximate design with up to
L =20 support points. We use € =0.99 or 400,000
maximum iterations as the stopping criterion, which-
ever comes first. This procedure produces 100 locally
D-optimal approximate designs, one for each choice
of fs. We then compare the relative D-efficiency of
the PSO-generated locally D-optimal design with
nominal value 5 = 0.2 relative to its true value which
could be any value in [0,1] using (4). Figure 4 plots
the D-efficiencies for varying amounts of mis-specifi-
cation in the temperature parameter f5. For a range
of roughly =100 percent the nominal value, ie.
(0,0.4), the design is highly optimal. However, if we
are very wrong about the magnitude of the effect,
then the efficiency drops off steeply to as low as
20 percent.

4.3. Pseudo-Bayesian D-optimal approximate
design

Section 4.2 demonstrated that mis-specification of the
model parameters, even if it is just for one parameter,
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Figure 3. Plots of the sensitivity functions of the PSO-generated locally D-optimal approximate design for the odor removal experi-

ment at different configurations of the discrete factors.

can have a noticeable effect on the quality of the
design in practice. In general an experimenter will
likely not have nominal values for some or all of the
parameters, but likely will have varying amounts of
information on the true values for each of the param-
eters. The experimenter then elicits a prior distribu-
tion for the model parameters.

Motivated by this problem we next use PSO to find
a pseudo-Bayesian design for the odor removal experi-
ment. We follow the technique outlined in Gotwalt,
Jones, and Steinberg (2009) to find a pseudo-Bayesian
design. Table 2 displays the priors for the model
parameters. The priors are uniform and fairly wide,
implying that we do not have reliable prior knowledge
about the parameter values. We use PSO with 20 par-
ticles to search for a pseudo-Bayesian D-optimal
approximate design with up to L =20 support points.
We use 3,000 maximum iterations as the stopping cri-
terion. Table 5 shows the 18 point design found by
PSO. Searches for Bayesian designs are more compu-
tationally intensive. In this case, the search algorithm
required about 11 minutes to find the design.

4.4. Robustness to mis-specification of all
model parameters

Next, we conduct a robustness study to compare the
locally D-optimal approximate design from Table 3
with the pseudo-Bayesian approximate design in Table
5. In particular, we are interested in the relative per-
formance of the locally D-optimal approximate design

Table 4. Summary of the results from 1000 runs of the coord-
inate exchange algorithm. The time reported is the time
across all 1000 runs for the corresponding number of design
points. For comparison, the determinant of the Fisher informa-
tion matrix for the PSO-generated design is 1.51 x 107°.

Number of Best Average Time
Design Points Determinant Determinant (seconds)
12 1.28 x 107° 1.11 x 1076 28.06

13 1.34 x 107° 1.18 x 107 33.38
14 1.42 x 107° 1.22 x 107 36.75

15 1.40 x 107° 1.25 x 1076 42.18

16 1.42 x 107° 1.28 x 107 46.57

17 1.45 x 107° 1.31x 1076 52.51

18 1.45 x 107° 133 x 107 58.80

to the pseudo-Bayesian approximate design over a
wide range of possible parameter values. To fix ideas,
let £ be the locally D-optimal approximate design in
Table 3 and let &, be the pseudo-Bayesian design in
Table 5. Our procedure is as follows. First, we draw a
set of parameters from the prior in Table 2, @™ =
{[f(m)T,O(’">T}T,m: 1,...,1000. Then, for each draw
m, we calculate the relative efficiency of & to &, at
0™ as

- det{Iﬂ(m) om (&)} %
"= '
det{Tym ym ()}

Values of y<"‘) < 1 indicate that &, is more efficient
than & when O™ is the true parameter vector, and
7" > 1 indicates the opposite.

Figure 5 displays a histogram of the 7" values.
From the histogram, we can see that in the majority
of cases the pseudo-Bayesian design outperforms the
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Figure 4. D-efficiencies of the PSO-generated locally D-optimal
approximate design for the odor removal experiment assuming
fs = 0.2 relative to the locally D-optimal approximate design
when the true value for 85 € [0, 1].

locally D-optimal approximate design. However, there
are some cases in which the locally D-optimal
approximate design is able to significantly outperform
the pseudo-Bayesian design. In practice, when choos-
ing between two designs, it is important that a
researcher examines robustness to parameter mis-spe-
cification over a range of plausible values before
deciding which design to use.

5. Minimizing surface defects

Wu (2008) describes a study for manufacturing circuits
for the optimal parameter settings of a polysilicon
deposition process with the six factors in Table 6. The
original experiment discretized all of the continuous fac-
tors at three levels. The experiment had 5 outcomes,
labeled as Category I through Category V. We selected
this example from the literature because the odor-
removal experiment has only one continuous factor, and
thus we want to investigate PSO’s utility as the number
of continuous factors increases. Finding a locally D-opti-
mal design for this experiment is quite difficult, as we
need to find the optimal settings for five continuous fac-
tors. We used PSO with 20 particles and the nominal
parameter values in Table 6 to search for a locally D-
optimal approximate design with up to L =24 support
points. We set 50,000 maximum iterations as the stop-
ping criterion and the set of nominal values we used for
the four cutpoints is {01.0,,05, 94}T =
{—1.113,0.183,1.518,2.639}" based on the experiment
in Wu (2008). Table 7 displays the 14-point PSO-gener-
ated locally D-optimal approximate design with the
determinant for its Fisher information matrix. This
design was generated in about 25 seconds.

Table 5. The 18-point PSO-generated pseudo-Bayesian

approximate design for the odor removal experiment.

Algae Scav. Resin Comp. Temp. w;
1.0 1.0 -1.0 1.0 5.0 0.10
1.0 1.0 1.0 1.0 5.0 0.03

-1.0 1.0 1.0 1.0 11.76 0.04

-1.0 -1.0 1.0 1.0 5.0 0.06
1.0 1.0 1.0 -1.0 5.0 0.10
1.0 -1.0 -1.0 -1.0 34.98 0.02

-1.0 1.0 -1.0 -1.0 5.0 0.05

-1.0 -1.0 -1.0 -1.0 10.47 0.05

-1.0 1.0 -1.0 1.0 5.0 0.08
1.0 -1.0 1.0 1.0 7.68 0.03

-1.0 1.0 1.0 -1.0 28.79 0.02

-1.0 1.0 1.0 -1.0 8.38 0.04

-1.0 -1.0 1.0 -1.0 5.0 0.08

-1.0 -1.0 1.0 1.0 3237 0.05

-1.0 1.0 -1.0 -1.0 15.13 0.02
1.0 -1.0 -1.0 -1.0 5.0 0.11
1.0 -1.0 1.0 1.0 5.0 0.07

-1.0 -1.0 -1.0 1.0 5.0 0.04

It is not feasible to plot the six-dimensional sensi-
tivity function for this design across the whole design
space, and even if we could, it is hard to identify
important features from the high dimensional graph.
This keeps us from being able to verify visually
whether this approximate design is a locally D-opti-
mal. Instead, we conduct a simulation study by gener-
ating 100 designs using PSO with the same settings as
above and examine the distribution of these designs’
efficiencies relative to the design reported in Table 7.
If the efficiencies are generally close to unity, we can
be confident that the design we have found is locally
D-optimal, or is at least highly efficient. On the other
hand, if the relative efficiencies are highly variable,
then we know that we are likely doing a poor job
exploring the search space and thus we should be
concerned about the quality of our design.

Figure 6 displays a histogram of the resulting relative
efficiencies. It is clear from the image that all 100 designs
we found are nearly as efficient as the design in Table 7.
This allows us to be reasonably confident that the design
is locally D-optimal, or at least highly efficient.

6. Discussion

In this work we proposed a modified PSO algorithm
to search for locally D-optimal and pseudo-Bayesian
approximate design of experiments with mixed factors
and an ordinal response. The key advantages of PSO
are that (i) codes are widely available and easy to use,
(ii) it is generally fast and free of assumptions, and
(iii) it is a general purpose optimization algorithm
that can be used to solve many optimization problems
in science and engineering. Unlike other algorithms,
PSO does not require the design space to be discre-
tized and so it can capture more information from
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Figure 5. D-efficiencies of the PSO-generated locally D-optimal
approximate design for the odor removal experiment relative
to the pseudo-Bayesian design for 1000 draws from the prior
vector in Table 2.

Table 6. The six factors of interest in the surface defects
experiment and their nominal parameter values. CM is an
abbreviation for “cleaning method.” Continuous factor ranges
are relative to a base value.

Levels .

Nominal Value
Type Factor - +
Discrete Cleaning Method M1 M2 —0.970
Continuous Temperature -251t0 25 0.077
Continuous Pressure -200 to 200 0.008
Continuous Nitrogen Flow -150 to 0 —0.007
Continuous Silane Flow -100 to 0 0.007
Continuous Setting Time 0to 16 0.056
Table 7. The 14 point PSO-generated locally D-optimal

approximate design for the surface defects experiment. The
determinant of the Fisher information matrix for this design
is 6.71 x 10°.

Cleaning
Method Temp.  Pressure  Nit. Flow  Sil. Flow Set. Time  w;
-1.0 —25.0 199.96  —150.0 —100.0 16.0 0.05
1.0 23.14 196.35 0.0 —100.0 16.0 0.07
1.0 —24.99 199.99 —150.0 0.0 16.0 0.07
-1.0 25.0 —200.0 0.0 0.0 16.0 0.1
-1.0 —25.0 —200.0 —150.0 0.0 16.0 0.09
-1.0 250 —199.96 —150.0 —100.0 0.0 0.09
1.0 7.46 199.98 —150.0 0.0 0.0 0.10
1.0 25.0 —199.97 0.0 0.0 0.0 0.09
1.0 25.0 —200.0 —150.0 —100.0 0.0 0.05
1.0 250 —200.0 —149.98 —100.0 16.0 0.05
1.0 —24.48 200.0 0.0 —100.0 16.0 0.07
—1.0 —25.0 200.0 0.0 —100.0 0.0 0.09
-1.0 25.0 —199.78 0.0 —100.0 0.0 0.01
-1.0 —25.0 200.0 0.0 —0.01 0.0 0.06

the response surface than algorithms that require the
space to be discretized.

For this paper, we focus on applying PSO to find
optimal designs for an ordinal response model. It is a
flexible algorithm in the sense that if the link function
is not the cumulative logit link function, the codes
can be easily amended to generate and compare the

09600 09975 09950 09975 10000
Efficiency relative to the reported design

Figure 6. Efficiencies of the 100 PSO-generated designs for
the surface defects experiment relative to the design reported
in Table 7.

resulting optimal designs. Likewise, PSO can be dir-
ectly amended to find optimal designs for models
with nominal response categories. Further demonstra-
tion of PSO flexibility for finding different types of opti-
mal designs can be found in Wong et al. (2015), where
they found D-optimal designs for various models in
mixture experiments and in Chen et al. (2017), where
they found various types of maximin optimal designs
for enzyme-kinetic models. We applied this algorithm
to re-design a bioplastic odor removal study with nine
parameters without fixing the settings of an important
continuous factor in the study. We investigated the
robustness of this design to mis-specification in the
temperature value. We also demonstrated PSO’s ability
to find a locally D-optimal approximate design for a
surface defects example with ordinal response, one dis-
crete factor, and five continuous factors, which is a dif-
ficult search problem. While the emphasis of this paper
was on experiments with mixed factors, the method is
also applicable to experiments with only discrete or
continuous factors. In the Supplementary Materials, we
provide an application of our PSO approach to find
other kinds of designs for dose-response experiments,
and show that it can produce more efficient designs
than those in the literature.
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