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Abstract

We consider locally D-optimal crossover designs for generalized linear models. Three
different types of responses were recorded in a work environment experiment conducted at
Booking.com. These responses follow Poisson, beta and gamma distributions. The responses
from the same subjects are naturally correlated. To capture the dependence among these
observations, we use six different types of correlation structures. The optimal allocations
of subjects to each treatment sequence are obtained by minimizing the objective function,
which is the variance of direct treatment effect estimates. We show that optimal allocations
are reasonably robust to a different choice of correlation structures. Although uniform allo-
cations are widely used in practice, we establish these designs are sub-optimal under certain
conditions.

Key words: D-Optimality; Generalized Linear Models; Generalized estimating Equations;
Latin Square Design.

1. Introduction

Crossover designs, also known as repeated measurements designs or change-over de-
signs, have been used extensively in pharmaceutical and agriculture research. Most of the
present work focuses on optimal crossover designs for normal responses. But, there are ample
examples where responses are non-normal and needed to be described by generalized linear
models (GLMs). The optimal designs obtained for normal responses can be quite inefficient
for GLMs. The goal of this manuscript is to bridge this gap in the literature and obtain
efficient designs for crossover experiments with responses under GLMs, including Poisson,
beta, gamma responses, etc.

In crossover experiments, every subject is exposed to a sequence of treatments over
different time periods, i.e., subjects crossover from one treatment to another. Among dif-
ferent types of experiments available for treatment comparisons with multiple periods, the
crossover designs are among the most important ones. We can get the same number of ob-
servations but with fewer subjects. The time at which the subject receives the treatment is
known as a period and the order in which the particular subject receives treatments is known
as a sequence. Each subject receives one treatment in each period, and the corresponding
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response is recorded. Naturally, crossover designs also provide within-subject information
about treatment differences.

Most of the current literature in the crossover design deal with the continuous responses
(see, for example, Kershner and Federer (1981), Laska and Meisner (1985), Matthews (1987),
Carriere and Huang (2000), and the references therein). The problem of determining optimal
crossover designs for continuous responses has been studied extensively (see, for example,
Bose and Dey (2009) for a review of results). For examples of practical cases where the
responses are discrete, such as binary responses, one may refer to Jones and Kenward (2014)
and Senn (2003).

Different fixed effects models have been proposed in the literature, but the following
linear model is used extensively to formulate crossover designs. For an experiment involving
n subjects and p periods, the response is modeled as

Yij = A+ Bi + aj + Tai,j) + pagi-1,5) + €, (1)

where Y;; is the observation from the jth subject in the ¢th time period, withi =1,...,p and
j=1,...,n. Here d(i, 7) stands for the treatment assigned to the jth subject at time period
i and A, 35, o, Tagi j), pa@i—1,5) are the corresponding overall mean, the ith period effect, the
jth subject effect, the direct treatment effect and the carryover treatment effect respectively.
We define pgq ;) = 0. Here €;;s are the uncorrelated error terms which follow a normal
distribution with zero mean and constant variance. Model (1) is commonly referred to as
the traditional model due to its extensive use in the literature.

Note that the Fisher information matrix, for the linear model (1), is independent of
model parameters because all the effects are fixed. Various optimality criteria such as A-,
D-, E-optimality depend on this information matrix (see, for example, Pukelsheim (1993)).
The optimality of crossover designs for linear models has been studied extensively in the
literature. Hedayat and Afsarinejad (1978), Cheng and Wu (1980) and Kunert (1984b)
considered the optimality of balanced, uniform designs. Optimality of designs when p < ¢
were first formulated in Dey et al. (1983). However, these results are not directly applicable
to non-normal responses. In the case of GLMs Fisher information matrix depends on the
model parameters (McCullagh and Nelder (1989), Stufken and Yang (2012)); hence the
results on the optimality of crossover designs for linear models cannot be readily extended
to other types of responses.

2.  Preliminary Setup: Crossover Design for GLM

Most of the results available on optimal crossover designs deal with normal responses,
so the results on crossover designs under GLMs are limited. Before presenting the results
for optimal crossover designs, we formally introduce the associated generalized linear models
for crossover designs.

Consider a crossover experiment with ¢ treatments, n subjects, and p periods. The
response from the jth subject is Y; = (Y3;,...,Y,;)" and the overall response for these n
subjects are denoted as Y7, ...,Y,. The marginal distribution of Y;; is described using GLMs
as mentioned in Liang and Zeger (1986). Then the marginal mean p;; of Y;; for crossover
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trial is modeled as

g(uij) = mij = A+ Bi + Tagig) + Pai-1,9)» (2)

where ¢ = 1,...,p;7 = 1,...,n; X is the overall mean, J; represents the effect of the ith
period, 7y is the direct effect due to treatment s assigned to subject j in period i, p, is the
carryover effect due to treatment s assigned to subject j in period (i — 1), where s =1,... ¢
and g is a link function. We define py ;) = 0. For example, p ; is modeled as g(p1,;) =

7717]' = )\ + Td(l,j)-

In many situations interest lies mainly in the estimation of direct treatment effects, so
we treat carryover effects as nuisance parameter. To ensure the estimability of the parame-
ters, we set the baseline constraints as 5, =7 = p; = 0.

Consider 8 = (Ba,...,5,) , 7 = (72,...,7) and p = (pa2,...,p)’, which define the
parameter vector § = (A, 3,7, p)’. Then the linear predictor corresponding to the jth subject,
n; = (Mmy,-..,Mp;)" can be written as

The corresponding design matrix X; can be written as X; = [1,, P;, T}, F};], where P,
is p x (p — 1) matrix such that P; = [0—1)1, [,—1]"; T} is a p x (t — 1) matrix with its (i, s)th
entry equal to 1 if subject j receives the direct effect of the treatment s in the ith period and
zero otherwise; Fj is a p x (t — 1) matrix with its (¢, s)th entry equal to 1 if subject j receives
the carryover effect of the treatment s in the ith period and zero otherwise. The columns
of T; and Fj are indexed by 2,...,t. Note that 7} and F}; have t — 1 columns instead of ¢,
because of the baseline constraints 7, = p; = 0.

If the number of subjects is fixed to n and the number of periods is p, then we determine
the proportion of subjects assigned to a particular treatment sequence. As the number of
periods is fixed to p, each treatment sequence will be of length p and a typical sequence
can be written as w = (t1,...,t,) where ¢; € {1,...,t}. Now, let 2 be the set of all such
sequences and n, denote the number of subjects assigned to sequence w. Then, the total
number of subjects n can be written as n = X _cqn,, with n, > 0. A crossover design ( in
approximate theory is specified by the set {p,,w € Q}, where p, = n,/n is the proportion
of subjects assigned to treatment sequence w. Such a crossover design ¢ can be denoted as
follows:

C o { w1 Wo o WE }
Por Pz - Py |
where k is the number of treatment sequences involved, such that Zle Pw; = 1. From the
definitions of matrices 7} and F} it can be noted that they depend only on the treatments
sequence w that subject j receives. Let T, be the matrix 7" and F,, be the matrix F' when
subject receives sequence w. Then it can be inferred that all the subjects receiving sequence

w have same T and F' matrices. This implies, all the subjects receiving sequence w have
same design matrix i.e. X; = X,, as P; = [0p—1)1, [p—1]"-
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Following Jankar et al. (2020), we use generalized estimating equations (GEEs) to
estimate quasi-likelihood estimates of the model parameters. As mentioned in Zeger et al.
(1988, equation (3.1)), it can be shown that for repeated measurement model, the GEEs are

> Wit (Y — ) =0,
= o0 J J J
where y1; = (p1, . . ., jtp;)’ and the asymptotic variance for the GEE estimator § (see Zeger

et al., 1988, equation (3.2)) is
-1
) O 1 Ol
Var(@) = |:jz::1 %VV] % )
where W; = Cou(Y;).

We can write the above equation in the form of approximate designs as follows,

A Oy (171 Ot
Var(0) = » np,—=W, ;
P AT

where W, corresponds to the covariance matrix of response Y; when subject j receives
treatment sequence w.

Main interest usually lies in estimating the direct treatment effect contrasts. So, instead
of working with the full variance-covariance matrix of parameter estimator 8, we concentrate
only on the variance of the estimator of treatment effect Var(7). Here

Var(#) = HVar(0)H', (3)

where H is a (¢ — 1) x m matrix given by [0¢—1)1, 0¢—1)(p—1)> Lt—1, 0t—1)(t—1)], where m =
p+ 2t — 2 is the total number of parameters in 6 and 0¢—1)p—1) is a (t — 1) x (p — 1) matrix
of zeros.

Optimal proportions for crossover designs are obtained by minimizing the variances of
estimators of treatment effect. We use the D-optimality criterion and use the determinant
of Var(7) as our objective function. Then an optimal design * minimizes the determinant
of Var(7) in equation (3) with respect to p,,, such that >, cqpw = 1.

Note that the baseline constraints m; = 0 we set earlier results in the estimators for
7; — 11 for ¢+ > 2. In the case of a D-optimality criterion, it is okay to use an above baseline
constraint, but we must use different constraints in other optimality criteria. The above
method has been discussed in detail in Jankar et al. (2020).

3. The Work Environment Experiment

We considered the data obtained from the work environment experiment conducted at
Booking.com (Pitchforth et al. (2020)). In recent years, most corporate offices and organi-
zations are adopting open office spaces over the traditional cubical office spaces. Since there
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were no previous studies to examine the effects of office designs in workspaces, Booking.com
conducted an experiment to assess different office spacing efficiency.

In the work environment experiment, there were a total of n = 288 participants. These
participants were divided into four groups G4, G9, G3, G4 with each group having an equal
number of (72) individual participants. This experiment is essentially an uniform crossover
design with p = 4 periods and ¢ = 4 treatments. Periods were named Wavel, Wave2, Wave3
and Wave4, where each Wave had a duration of 2 weeks. The four treatments involved in
this experiment are office designs named as A (Activity-Based), B (Open Plan), C' (Team
Offices), and D (Zoned Open Plan), as shown in the figure below:

The images are reproduced from the manuscript Pitchforth et al. (2020), under Creative
Commons Attribution license (https://creativecommons.org/licenses/by/4.0/).

During the experiment, each group is exposed to different treatments over different
periods depending on the treatment sequence. At a given particular period, there was no
interaction between subjects from different groups. A Latin square design (Wu and Hamada,
2009) of order four has been used to decide the sequence of exposure so that no group was
exposed to the conditions in the same order as any other group. The design is shown below
in Table 1. A total of m = 23 covariates was involved in the experiment, but we consider
only the most important ones in our fitted model.

Table 1: Latin square design

Groups = G, Go G Gs
Period |

Wave 1 OPEN TEAM ZONE ACT

Wave 2 ACT ZONE OPEN TEAM
Wave 3 ZONE ACT TEAM OPEN
Wave 4 | TEAM OPEN ACT ZONE

In the following analysis, we consider three different responses that were recorded dur-
ing the experiment. We discuss these responses in more detail in the following sections.
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These three responses follow three different types of distributions. We make an extra as-
sumption that the responses from a particular subject are mutually correlated, while the
responses from different subjects are uncorrelated. To capture the dependency among the
observations coming from the same subject, we calculate optimal proportions for these dif-
ferent responses using six different correlation structures proposed in Section 2.3 of Jankar
et al. (2020) and shown in the Appendix. For each correlation matrix that we consider,
an optimal design (* is the one minimizing the determinant of Var(7) in equation (3) with
respect to p, such that , copw = 1.

We use different colors to represent different correlation structures. The color scheme
that we use is as follows:

Correlation Structure Color

Corr(1)
Corr(2)
Corr(3)
Corr(4)
Corr(5)
Corr(6)

OECOE1N

4. Poisson Regression

In the case of Poisson response we calculate locally optimal design for the above example
under the model,

log(ij) = mij = A+ Bi + Tagij) + Pa(i-1.5),

where notations have the same meaning as in equation (2). In the above experiment, there
were many different types of responses recorded. We consider the response commit count
to illustrate the optimal crossover design for the Poisson response. The commit counts were
the number of commits submitted to the main git repository.

4.1. Analysis of data

We consider the three main predictors in the model, which are area, wave and carryover
where area corresponds to the direct treatment effect, wave corresponds to the period effect,
and carryover corresponds to the carryover effect of a treatment given in previous period.
We use different kinds of correlation matrices and calculate the optimal proportions. As
mentioned earlier we consider baseline constraints as #; = 73 = p; = 0, so that all the
parameters are estimable.

We fit the Poisson regression model to the commit data by using the glm function in R
and calculate the parameter estimates. We use these parameter estimates to make a guess
for values of unknown parameters. Our nominal guess for the parameter values is 6, = [2,
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0.3, 0.8, —0.1, —0.2, 0.04, —0.2, —0.6, 0.15, —0.4]. It is interesting to note that carryover
effects are larger than direct effects even though 6; is calculated using experimental data.
Now, we calculate the optimal designs for different correlation structures by minimizing the
objective function. We also calculate optimal proportions for another parameter 6, = [2,

0.3, 0.8, —0.1, —2.0, 0.40, —2.0, —1.0, 0.30, —1.0], which is significantly different from 0.

4.2. Optimal designs

In the Table 2, we present the optimal proportions corresponding to Poisson response
for six different choices of the correlation matrix.

Table 2: Optimal proportions in case of Poisson response

Correlation 01 )

Structure | BADC CDAB DBCA ACBD | BADC CDAB DBCA ACBD

(1) 0.2500  0.2500  0.2500  0.2500 | 0.2500  0.2500  0.2500  0.2500
(2) 0.2500  0.2500  0.2500  0.2500 | 0.2747  0.3113  0.1841 0.2299
(3) 0.2500  0.2500  0.2500  0.2500 | 0.2795  0.3074  0.1798  0.2333
Corr(4) 0.2500  0.2500  0.2500  0.2500 | 0.2562 0.3168  0.1860  0.2410
(5) 0.2500  0.2500  0.2500  0.2500 | 0.2736  0.3138  0.1922  0.2204
(6) 0.2500  0.2500  0.2500  0.2500 | 0.2537  0.3190  0.1844  0.2429

As seen from Table 2, in case of Poisson response the optimal proportions that we
obtain using #; are nearly uniform and that using 6, are non-uniform.

Uniform Allocation for Poisson Response

LR RLRL

ACBD

0z 03 04
1 1 1

Cptimal Proportions

0.1

oo

Treatment Sequences

Figure 1: Uniform optimal proportions for Poisson response under 6,
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The plots in Figures 1 and 2 represent the optimal proportions for Poisson response
under #; and 6, respectively. It can be seen from these plots that the optimal proportions
do not vary much when we use different correlation structures under #; and 65. In most
situations in practice, uniform, optimal designs (the same proportion for each treatment
sequence) are used. It is clear from the above analysis that those uniform designs are sub-
optimal under 6,.

Non Uniform Allocation for Poisson Response

0D T 1

BADC CDAB DBCA ACBD

02 03 04 05

Optimal Proportions

0.1

0.0

Treatment Sequences

Figure 2: Non-uniform optimal proportions for Poisson response under 6,

5. Beta Regression

In the beta response case, we calculate the locally optimal design for the response
from the Booking.com example under two different models. We consider two different link
functions to model the marginal mean of the response as follows:

Mij
L — i

logit (f145) = log( ) = nij = A+ Bi + Tai gy + pai-1.),

and,

log(pij) = nij = A+ Bi + Tagi.j) + Pati-1,)

where notations have the same meaning as in equation (2).

To illustrate the optimal proportions in the beta response case, we consider the nor-
malized response engagement from the work environment experiment. In the case of this
experiment, engagement is a measure of the extent to which participants felt focused on and
excited to complete regular work tasks.
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5.1. Analysis of data

Similar to the Poisson response analysis, we consider three main predictors in the
model for a beta response which are area, wave and carryover. We use six different kinds
of correlation matrices as mentioned above and calculate optimal proportions under two
different models with different link functions. As mentioned earlier, we consider baseline
constraints so that all the parameters are estimable.

We get the initial estimates of parameters by fitting the beta regression model to the
response. For two different link functions we need to guess two different sets of parameter
values for #; and 6. In case of logit link function, our nominal guess for the parameter
values is 6; = [1.24, —0.035, 0.17, 0.078, —0.2, —0.3, 0.01, —0.35, —0.62, —0.329] and 6,
= [1.24, —0.035, 0.17, 0.078, —4, —6, 2, —3.5, —3.1, —1.28]. In case of log link function,
our nominal guess for the parameter values is §; = [—0.25, —0.01, 0.04, 0.02, —0.05, —0.08,
—0.004, —0.088, —0.172, —0.08] and 65 = [—0.25, —0.01, 0.04, 0.02, —5, —8, —0.4, —2.2,
—4.3, —2|. Note that, as before, 6, is an educated guess based on the data at hand, whereas
0y has significantly different values for the parameters of interest than that of 6,.

5.2. Optimal designs

In the Table 3, we present the optimal proportions corresponding to logit link case for
six different choices of correlation matrix. As seen from Table 3, in case of beta response
(logit link) the optimal proportions that we obtain using #; are nearly uniform and that
using #, are non-uniform.

Table 3: Optimal proportions in case of beta response (logit link).

Correlation 01 0

Structure | BADC CDAB DBCA ACBD | BADC CDAB DBCA ACBD

Corr(1) 0.2518  0.2563  0.2465  0.2454 | 0.3418  0.2085  0.1643  0.2854

Corr(2) 0.2525  0.2572  0.2453  0.2450 | 0.3316  0.2066  0.1690  0.2928

Corr(3) 0.2515  0.2568  0.2462  0.2455 | 0.3363  0.2058  0.1682  0.2897

Corr(4) 0.2405  0.2539  0.2419  0.2637 | 0.3205 0.2043  0.1739  0.3013

Corr(5) 0.2595  0.2542  0.2467  0.2396 | 0.3250  0.2070  0.1711 0.2969
(6)

Corr 0.2366  0.2562  0.2423  0.2649 | 0.3218  0.2088  0.1668  0.3026

In Table 4, we present the optimal proportions corresponding to the log link case for
six different choices of the correlation matrix. As before, in the beta response (log link) case,
the optimal proportions that we obtain using #; are nearly uniform and that using 6, are
non-uniform.

The plots in Figures 3, 4 and Figures 5, 6 represent the optimal proportions for beta
response under ¢; and 6, for two different choices of link functions respectively.
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Uniform Allocation for Beta Response: Logit Link

I RU Rl
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Optimal Proportions
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0.1

0.0

BADC CDAB DBCA ACBD

Treatment Sequences

Figure 3: Uniform optimal proportions for beta response (logit link) under 6,

Non Uniform Allocation for Beta Response: Logit Link

i

BADC CDAB DBCA ACBD

02 03 04 05
1 ]

Optimal Proportions

0.1

Treatment Sequences

Figure 4: Non-uniform optimal proportions for beta response (logit link) under
)
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Table 4: Optimal proportions in case of beta response (log link).

Correlation 01 0-

Structure | BADC CDAB DBCA ACBD | BADC CDAB DBCA ACBD
Corr(1) 0.2522 0.2560 0.2470 0.2448 0.3305 0.1470 0.1930 0.3295
Corr(2) 0.2529 0.2569 0.2458 0.2444 0.3270 0.1200 0.2084 0.3446
Corr(3) 0.2520 0.2564 0.2466  0.2450 0.3290 0.1210 0.2050 0.3450
Corr(4) 0.2410 0.2535 0.2425 0.2630 0.3271 0.1060 0.2137 0.3532
Corr(5) 0.2600 0.2540 0.2460 0.2400 0.3245 0.1101 0.2102 0.3552
Corr(6) 0.2371 0.2558 0.2428 0.2643 0.3272 0.1096 0.2120 0.3512

05

04

Optimal Proportions
03
1

02

0.1

0.0

BADC

Uniform Allocation for Beta Response: Log Link

CDAB

L1100

DBCA ACBD

Treatment Sequences

Figure 5: Uniform optimal proportions for beta response (log link) under 6,

It can be seen from these plots that optimal proportions do not vary much when we
use different correlation structures under 6; and #,. In most of the situations in practice
uniform optimal designs are used. The above analysis shows that those uniform designs are
sub-optimal under 5 irrespective of what link function is used.
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Non Uniform Allocation for Beta Response: Log Link
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1

Optimal Proportions
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BADC CDAB DBCA ACBD

Treatment Sequences

Figure 6: Non-uniform optimal proportions for beta response (log link) under 6,

6. Gamma Regression

In the case of Gamma response, we calculate locally D-optimal design for the response
from the same Booking.com example under two different models. Similar to the beta re-
sponse, we consider two different link functions to model the marginal mean of the response.
We use the log, and tnverse link functions, and the two models are as follows:

log(pij) = nij = A+ Bi + Td(i,5) T Pd(i—1,5)s

and,

) 1
inv(pig) = i =Nij = A+ Bi + Tagij) + Pai-1,)

v)

where, as before, notations have the same meaning as in equation (2).

From the work environment experiment, we consider the response satis faction. Satis-
faction is an essential concept for organisational and office design research, and it is usually
used to measure employees’ sentiments. In the work environment experiment, the Leesman
satisfaction index was used, which is useful for many benchmark purposes. Since the response
is right-skewed, it is safe to assume that the response follows a gamma distribution.
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6.1. Analysis of data

Similar to previous two cases, we consider three main predictors in the model for gamma
response which are area, wave and carryover. As before, we consider six different kinds
of correlation matrices and calculate optimal proportions under two different models with
different link functions. We consider same baseline constraints as mentioned earlier. We fit
the gamma regression model to the data with satisfaction as response by using the glm
function in R and calculate the parameter estimates.

In case of log link function, our nominal guess for the parameter values is ¢; = [2.1,
—0.19, —0.04, —0.04, —0.16, —0.4, —0.06, 0.05, 0.005, —0.05] and # = [2.1, —0.19, —0.04,
—0.04, —1.6, —4.0, —0.6, 0.5, 0.05, —0.5]. In case of inverse link function, our nominal
guess for the parameter values is #; = [0.13, 0.03, 0.003, 0.003, 0.025, 0.07, 0.008, —0.007,
—0.0001, —0.01] and 6 = [0.13, 0.03, 0.003, 0.003, 2.5, 7, 0.8, —0.7, —0.01, —1]. As before,
01 was motivated by the data provided by Pitchforth et al. (20202) and 0, is significantly
different from 6;.

6.2. Optimal designs

In the Table 5, we present the optimal proportions corresponding to log link case for
six different choices of correlation matrix. As seen from Table 5, in case of gamma response
(log link) the optimal proportions that we obtain using ¢, are nearly uniform and that using
0, are non-uniform.

Table 5: Optimal proportions in case of gamma response (log link).

Correlation 01 02

Structure | BADC CDAB DBCA ACBD | BADC CDAB DBCA ACBD

Corr(1) 0.2500  0.2500  0.2500  0.2500 | 0.1328  0.2775  0.3336  0.2561
Corr(2) 0.2500  0.2500  0.2500  0.2500 | 0.1248  0.2639  0.3527  0.2586
Corr(3) 0.2500  0.2500  0.2500  0.2500 | 0.1258  0.2582  0.3596  0.2564
Corr(4) 0.2500  0.2500  0.2500  0.2500 | 0.1206  0.2671 0.3451 0.2672
Corr(5) 0.2500  0.2500  0.2500  0.2500 | 0.1225 0.2770  0.3354  0.2656
Corr(6) 0.2500  0.2500  0.2500  0.2500 | 0.1195 0.2685  0.3416  0.2704

In Table 6, we present the optimal proportions corresponding to inverse link case for
six different choices of correlation matrix. As before, Table 6 indicates that the optimal
proportions that we obtain using ¢; are nearly uniform and that using 6y are non-uniform
in case of gamma response (inverse link).

The plots in Figures 7, 8 and Figures 9, 10 represent the optimal proportions for gamma
response under #; and 6 for two different choices of link functions respectively.
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Uniform Allocation for Gamma Response: Log Link
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Figure 7: Uniform optimal proportions for gamma response (log link) under 6,

Non Uniform Allocation for Gamma Response: Log Link
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Figure 8: Non-uniform optimal proportions for gamma response (log link) under
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Table 6: Optimal proportions in case of gamma response (inverse link).
Correlation 01 0
Structure | BADC CDAB DBCA ACBD | BADC CDAB DBCA ACBD
Corr(1) 0.2500 0.2500 0.2500 0.2500 0.2650 0.3093 0.1828 0.2429
Corr(2) 0.2500 0.2500 0.2500 0.2500 0.2486 0.3031 0.1911 0.2572
Corr(3) 0.2500 0.2500 0.2500 0.2500 0.2588 0.3051 0.1879 0.2482
Corr(4) 0.2500 0.2500 0.2500 0.2500 0.2389 0.3087 0.1784 0.2740
Corr(5) 0.2500 0.2500 0.2500 0.2500 0.2406 0.3112 0.1762 0.2720
Corr(6) 0.2500 0.2500 0.2500 0.2500 0.2421 0.3146 0.1740 0.2729
Uniform Allocation for Gamma Response: Inverse Link
. I]] I]] I]] I]]

0.0

BADC

CDAB

DBCA

Treatment Sequences

ACBD

Figure 9: Uniform optimal proportions for gamma response (inv link) under 6;

It can be seen from these plots that optimal proportions do not vary much when we
use different correlation structures under #; and #,. In most of the situations in practice
uniform optimal designs are used. The above analysis shows that those uniform designs are
sub-optimal under 65 irrespective of what link function is used.
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Non Uniform Allocation for Gamma Response: Inverse Link

1L 10

BADC CDAB DBCA ACBD

0.3 04 0.5
| ]

Optimal Proportions

0.1

00

Treatment Sequences

Figure 10: Non-uniform optimal proportions for gamma response (inv link) un-
der 6,

7. Summary and Conclusion

In many experiments in real life, uniform designs are often used. Uniform designs are
those in which the same number of subjects are assigned to each treatment sequence. These
uniform designs are optimal in the linear model case, i.e. when the response is normally
distributed. But, in situations where responses are non-normal, the obtained optimal pro-
portions are not necessarily uniform. In this paper’s analysis, we identify locally optimal
designs for responses belonging to Poisson, beta and gamma distributions. Two different link
functions were considered in the case of beta and gamma responses. Tables 2 to 6 and plots
in Figures 1 to 10 suggest that obtained optimal proportions are robust for different choice of
correlations structures. These results also suggest that uniform designs are sub-optimal un-
der 05 irrespective of the link function used or the response’s distribution. Note that we are
using the local optimality approach of Chernoff (1953). In real experiments, it is not always
possible to guess the values of parameter estimates from prior knowledge. In that case, it is
not easy to obtain locally optimal designs. In this paper we consider approximate designs
in terms of optimal proportions. While conducting real life experiments, the practitioners
must use exact designs where these proportions are to be converted into integers for deter-
mining the replication numbers of the sequences. The rounding off error might be significant
unless the total number of observations is large. The Work Environment Experiment had
288 subjects and hence such issues do not arise.
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APPENDIX

Six Different Correlation Structures

The first correlation structure is a compound symmetric correlation structure, i.e.,
Corr(1) = (1= p)I, + pJp,
where I, is the identity matrix of order p, and J, is a p X p matrix with all elements unity.

The second correlation structure is the AR(1) correlation structure, i.e.,

Corr(2) = <p|i_i/|>,

so that the correlation between responses decreases as the time gap between responses in-
creases.

The third correlation structure is as follows:

1 p 0 ... 000

p 1 p 0 00
Corr(3) = |

00 0 . p 1 p

000 ... 0p1

For each correlation structure different correlation matrices using different p values are
considered.

To understand the other three correlation structures, we denote the correlation coeffi-
cient between the response when a subject receives treatment A first and the response when
the same subject receives treatment B afterwards as pap and pga when the subject receives
B first and A afterwards. Note that in general, p4p is not necessarily the same as pg4. In a
similar manner we define ps4 and pggr. To define the fourth type of correlation structure, we
will use the same structure as Corr(3) but with different values of the correlation coefficient
for different treatment sequences.

To define the fifth and sixth type of correlation structures, we use AR(1) correlation
structure with correlation coefficient depending on treatment sequence. For the fifth type,
we use the same values for p4p and pga, and for the sixth type of correlation structure, we
use different values for p4p and pp4. For both fifth and sixth type of correlation structure
we keep paa = ppp. These values might vary from example to example and depend on what
treatments A and B are. As the correlation matrix entries depend on which treatment the
subject receives in a particular period, these correlation matrices are different for different
treatment sequences.
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