Skip to main content
Skip to main menu Skip to spotlight region Skip to secondary region Skip to UGA region Skip to Tertiary region Skip to Quaternary region Skip to unit footer

Slideshow

Yuhong Yang

Yang
<a href="http://www.stat.umn.edu/~yyang/">University of Minnesota</a>

Parametric and nonparametric models are convenient mathematical tools to describe characteristics of data with different degrees of simplification. When a model is to be selected from a number of parametric candidates, not surprisingly, differences occur when the data generating process is assumed to be parametric or nonparametric. In this talk, in a regression context, we will consider the question if and how we can distinguish between parametric and nonparametric situations and discuss feasibility of adaptive estimation to handle both parametric and nonparametric scenarios optimally. A new model selection consistency result that can handle high dependence of the predictors will be presented as well. This is joint work with Wei Liu.

Support us

We appreciate your financial support. Your gift is important to us and helps support critical opportunities for students and faculty alike, including lectures, travel support, and any number of educational events that augment the classroom experience. Click here to learn more about giving.

Every dollar given has a direct impact upon our students and faculty.